mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IXGR 35N120BD1

High Voltage IGBT with **Diode**

(Electrically Isolated Back Surface)

V _{CES}	= '	1200	V
	=	54	Α
V _{CE(sat)}	=	3.5	V
t _{fi(typ)}	=	160	ns

Symbol	TestConditions	Maximum Ratings			
V _{ces}	T _J = 25°C to 150°C	1200	V		
V _{CGR}	$T_{_{ m J}}$ = 25°C to 150°C; $R_{_{ m GE}}$ = 1 M Ω	1200	V		
V _{ges}	Continuous	±20	V		
V _{GEM}	Transient	±30	V		
I _{C25}	$T_c = 25^{\circ}C$	54	A		
I _{C110}	$T_c = 110^{\circ}C$	28	А		
I _{F110} I _{СМ}	T _c = 110°C T _c = 25°C, 1 ms	8 200	A A		
SSOA (RBSOA)	V_{GE} = 15 V, T _J = 125°C, R _G = 10 Ω Clamped inductive load	I _{CM} = 120 @0.8 V _{CES}	A		
P _c	$T_c = 25^{\circ}C$	250	W		
T,		-55 +150	°C		
T _{JM}		150	°C		
T _{stg}		-55 +150	°C		
V _{ISOL}	50/60 Hz, RMS, t = 1 min I _{SOL} = 1mA, t = 1 s	2500 3000	V~ V~		
F _c	Mounting force	22130/529	N/lb		
	Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s	300	°C		
Weight		6	g		

ISOPLUS247 (IXG	R)
-----------------	----

G = Gate	C = Collector
E = Emitter	TAB = Electrically
	Isolated

Features

- Silicon chip on DCB substrate
 - High power dissipation
 - Isolated mounting surface
 - 2500V electrical isolation
- IGBT and anti-parallel FRED for resonant power supplies
 - Induction heating
- Rice cookers
- MOS Gate turn-on
- drive simplicity
- Fast Recovery Expitaxial Diode (FRED)
- soft recovery with low $I_{_{\rm RM}}$

• • •	
Symbol	lest Conditions

Symbol	Test Conditions		Characteristic Value			lues
(T _⊥ = 25°C,	unless otherwise specified)		min.	typ.	max.	
V _{GE(th)}	I _c = 250 μA, V _{CE} = V _{GE}		2.5		5.0	V
I _{CES}	$V_{CE} = V_{CES}$ $V_{GF} = 0 V$	T=25°C T=125°C			50 250	μA μA
	$V_{ce} = 0 V, V_{ge} = \pm 20 V$				±100	nA
V _{CE(sat)}	I _c = 35A, V _{GE} = 15 V Note 2			2.8	3.5	V

Advantages

- Saves space (two devices in one package)
- Easy to mount
- Reduces assembly time and cost

LIXYS

IXGR 35N120BD1

$(T_{J} = 25^{\circ}C, \text{ unless otherwise specified})$ $\underline{\text{min.} \text{typ.} \text{max.}}_{g_{fe}}$ $I_{C} = 35A; V_{CE} = 10 \text{ V}, \qquad 28 38 \text{S}$	
min. typ. max. g_{fe} I_c = 35A; V_{ce} = 10 V, 28 38 S	
\mathbf{g}_{fe} I = 35A; V _{CE} = 10 V, 28 38 S	
Note 2.	
C _{ies} 2300 pF	
C _{oes} V _{CE} = 25 V, V _{GE} = 0 V, f = 1 MHz 190 pF	
C _{res} 80 pF	
Q _g 140 nC	
Q_{ge} $I_{c} = 40A, V_{GE} = 15 V, V_{CE} = 0.5 V_{CES}$ 20 nC	
Q _{gc} 50 nC	
t _{d(on)} Inductive load T = 25°C 40 ns	SYM INCHES MILLIMETERS
t_{ri} 50 ns	A .190 .205 4.83 5.2
$E_{m} = I_{c} = 35 \text{ A}; V_{GE} = 15 \text{ V}$ 0.9 mJ	A1 .090 .100 2.29 2.5
$V_{CE} = 0.8 V_{CES}; R_{G} = R_{off} = 3 \Omega$ 270 500 ns	b .045 .055 1.14 1.4
^t a(off) Note 1.	b1 .075 .084 1.91 2.10
t _{ri} 160 300 ns	C .024 .031 0.61 0.8
E 3.8 7.0 mJ	D .819 .840 20.80 21.3
	e .215 BSC 5.45 BSC
$t_{d(on)}$ Inductive load, T_{J} = 125°C 45 ns	L .780 .800 19.81 20.3
$t_{\rm el} = 1 - 350 \cdot V_{\rm el} - 15 V_{\rm el}$ 60 ns	Q .220 .244 5.59 6.2
$\mathbf{F} = 1000 \mathbf{F} = 1000 \mathbf{F}$	R .170 .190 4.32 4.8
$\mathbf{F}_{on} \qquad \mathbf{V}_{CE} = 0.8 \mathbf{V}_{CES}; \mathbf{R}_{G} = \mathbf{R}_{off} = 3 \Omega \qquad \qquad 1.3 \mathbf{V}_{OES}$	<u> </u>
t _{a(off)} Note 1 380 ns	U .065 .080 1.65 2.03
t _{ri} 400 ns	1 – GATE
E _{off} 8.0 mJ	2 – DRAIN (COLLECTOR) 3 – SOURCE (EMITTER)
R _{thJC} 0.5 K/W	4 - NO CONNECTION
R _{thCK} 0.25 К/W	requirement of JEDEC outline TO-247AD except screw hole.

	~				
	Ь1	.075	.084	1.91	2.13
	b2	.115	.123	2.92	3.12
	С	.024	.031	0.61	0.80
	D	.819	.840	20.80	21.34
	E	.620	.635	15.75	16.13
-	е	.215	BSC	5.45	BSC
	L	.780	.800	19.81	20.32
	L1	.150	.170	3.81	4.32
	Q	.220	.244	5.59	6.20
	R	.170	.190	4.32	4.83
	S	.520	.540	13.21	13.72
	T	.620	.640	15.75	16.26
	U	.065	.080	1.65	2.03
_		1 · 2 · 3 · 4 ·	– GATE – DRAIN – SOURCI – NO COI	(COLLECTO E (EMITTEI NNECTION	DR) R)
	NOTE:	This drawi requireme	ng will mee nt of JEDEC	t all dimens Coutline TO	sions -247AD

Reverse Di	iode (FRED) Ch	aracteri otherwis	i <mark>stic Va</mark> se spec	ilues
Symbol	Test Conditions min.	typ.	max.	,
V _F	I _F = 10 A, V _{GE} = 0 V I _F = 10 A, V _{GE} = 0 V, T _J = 125°C		3.3 2.2	V V
I	I _F = 10 A; -di _F /dt = 100 A/μs, V _R = 100 V	4.0		А
t _{rr}	V _{GE} = 0 V; T _J = 125°C	190		ns
t _{rr}	$I_{_{\rm F}}$ = 1 A; -di_{_{\rm F}}/dt = 100 A/µs; $V_{_{\rm R}}$ = 30 V, $V_{_{\rm GE}}$ = 0 V	40		ns
R _{thJC}			2.5	K/W

1. Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES}, higher T_J or increased R_G. 2. Pulse test, t ≤ 300 µs, duty cycle d ≤ 2 %. Notes:

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered by	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065B1	6,683,344	6,727,585
one or moreof the following U.S. patents:	4,850,072	5,017,508	5,063,307	5,381,025	6,259,123B1	6,534,343	6,710,405B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	