imall

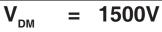
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

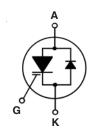

Symbol

V_{DM}

V_{GK}

Preliminary Technical Information

IXHX40N150V1HV


1500V MOS Gated Thyristor w/ Anti-Parallel Diode

Test Conditions

Continuous

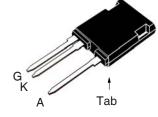
Τ.

= 25°C to 150°C

V V

V

kA kA W °C °C °C °C °C


g

Maximum Ratings

1500

±30

TO-247PLUS-HV

G = Gate	Κ	= Cathode
A = Anode	Tab	= Anode

Features

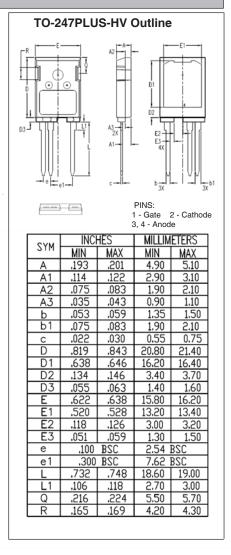
- Very High Voltage Package
- Anti-Parallel Diode
- Very High Current Capability

Test Conditions Characteristic Values Symbol (T₁ = 25°C, Unless Otherwise Specified) Min. Тур. Max. V_{BR} $= 250 \mu A, V_{GK} = 0V$ 1500 V ľ = 250 μ A, V_{AK} = V_{GK} V 2.5 5.0 V_{GK(th)} I_ I_T = 1000A, V_{GK} = 15V V_T 5.95 7.5 V I_T > I_L, V_{GK} = 15V 1.20 mΩ r_T V V_{BO} $V_{GK} = 15V$ 6.45 \mathbf{I}_{D} $V_{AK} = 1500V, V_{GK} = 0V$ μA 15 T₁ = 125°C 1.5 mΑ 250 А ľ 200 А I_H $V_{AK} = 0V, V_{GK} = \pm 30V$ ±200 nA GKS

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications


- Capacitive Discharge Circuits
- Ignition Circuits
- Solid State Surge Protection

V _{GK}	Transient	±40
I _{TSM}	T _c = 25°C, 1μs T _c = 25°C, 10μs	7.6 3.5
P _D	$T_c = 25^{\circ}C$	695
T,		-55 +150
Т _{јм}		150
T _{stg}		-55 +150
T _l T _{sold}	Maximum Lead Temperature for Soldering 1.6 mm (0.062 in.) from Case for 10s	300 260
F _c	Mounting Force	20120 /4.527
Weight		6

LIXYS

IXHX40N150V1HV

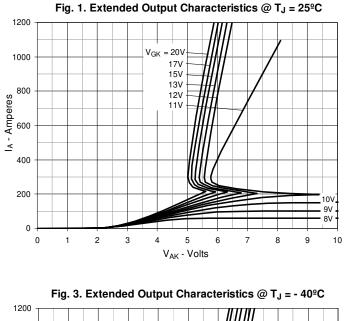
Symbol Test Conditions	Characteristic Values		
$(T_J = 25^{\circ}C \text{ Unless Otherwise Specified})$	Min.	Тур.	Max.
C _{iks}		2825	pF
C_{oks} $V_{AK} = 25V, V_{GK} = 0V, f = 1MHz$		164	pF
C _{rks}		50	pF
Q _{g(on)}		99	nC
\mathbf{Q}_{gk} $\Big _{C} = 40A, V_{GK} = 15V, V_{AK} = 600V$		22	nC
		36	nC
t_{ri} Capacitive Discharge, $T_J = 25^{\circ}C$		100	ns
$\mathbf{t}_{d} \qquad \begin{cases} I_{A} = 2000A, V_{GK} = 15V, R_{G} = 1\Omega \\ V_{AK} = 1000V, L < 20nH, Notes 2 & 3 \end{cases}$		50	ns
t_{ri} Capacitive Discharge, $T_J = 125^{\circ}C$		100	ns
$I_{A} = 2000A, V_{GK} = 15V, R_{G} = 1\Omega$			
t_{d} J V _{AK} = 1000V, L < 20nH, Notes 2 & 3		50	ns
R _{thJC}			0.18 °C/W
R _{thCS}		0.15	°C/W

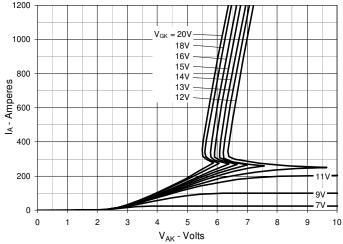
Reverse Diode (FRED)

Symbol Test Conditions (TJ = 25°C Unless Otherwise Specified)	Chara Min.	acteristic Typ.	Values Max.	
$V_{_{\rm F}}$ $I_{_{\rm F}} = 100$ A, $V_{_{\rm GK}} = 0$ V, Note 1			2.2	V
$\left. \begin{array}{c} I_{_{RM}} \\ t_{_{rr}} \end{array} \right\} \left. \begin{array}{c} I_{_{F}} = 50A, V_{_{GK}} = 0V, \\ -di_{_{F}}/dt = 20A/\mus, V_{_{R}} = 400V \end{array} \right.$		29 4.1		A µs
R _{thJC}			0.36 °C	C/W

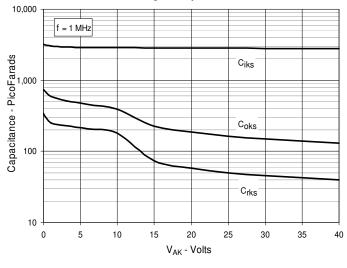
Notes:

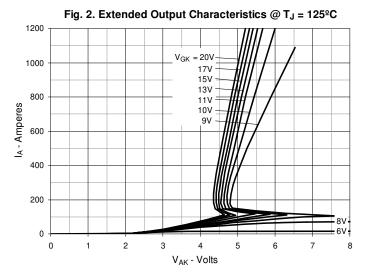
- 1. Pulse test, t \leq 300µs, duty cycle, d \leq 2%.
- It is recommended to use a gate driver capable of supplying more than 4Amps and ≥15V gate voltage.
- 3. Refer to fig. 10 & 11.

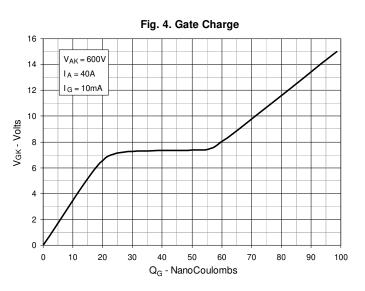

PRELIMANARY TECHNICAL INFORMATION

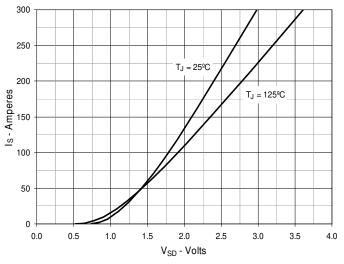

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

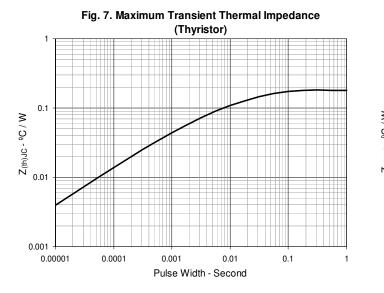

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.




IXHX40N150V1HV







IXHX40N150V1HV

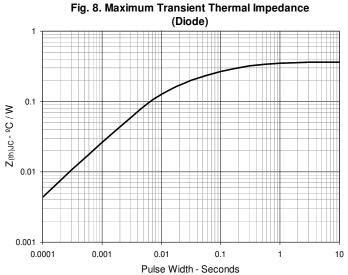
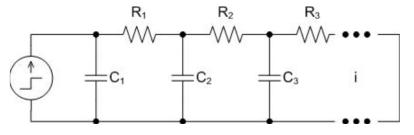



Fig. 9. Cauer Thermal Network

i	Ri (Ω)	Ci (F)
1	0.015004	0.005397
2	0.071079	0.028026
3	0.051007	0.121930
4	0.002310	2.500000

Fig. 10. Capacitive Discharge Circuit

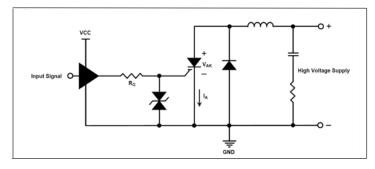
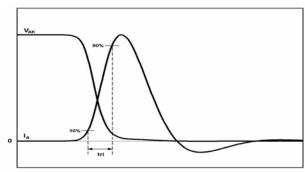



Fig. 11. Capacitive Discharge Waveform

Time IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.