

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IXI858 / IXI859

Gate Driver with VReg and Charge Pump Regulator

Features:

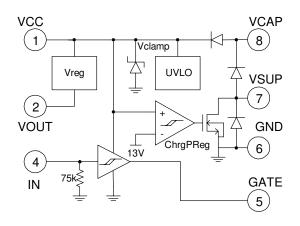
- Logic Level Gate Drive Compatible
- 60mA Source / 120mA Sink Minimum Gate Drive
- 5.0V or 3.3V Voltage Regulator
- Charge Pump Regulator Stabilizes V_{CC} Power Supply at 13V
- UVLO Protection

Applications:

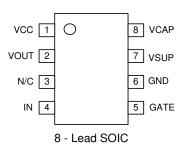
- µController based off-line applications
- Power Supply and Power Management
- Lighting Control

General Description

The IXI858 and IXI859 combine a power MOSFET driver, linear voltage regulator, and charge pump regulator for power supply generation in a single SOIC-8 package. The IXI858 features a 5.0V linear voltage regulator, and the IXI859 a 3.3V linear voltage regulator. These three power functions combined on the IXI858/859 target micro-controller based off-line applications.


The IXI858 and IXI859 are designed to operate over a temperature range of -25°C to +125°C, and are available in an 8 lead SOIC package.

ORDERING INFORMATION


1

Part No.	Description	Pack Quantity		
IXI858S1	5.0V Version	100 (Tube)		
IXI858S1T/R	5.00 Version	2500 (Tape & Reel)		
IXI859S1	3.3V Version	100 (Tube)		
IXI859S1T/R	3.3V VEISIOII	2500 (Tape & Reel)		

Functional Block Diagram

SOIC-8 Lead Configuration

SOIC-8 Pin Description

Pin No.	Pin Symbol	I/O	Description
1	VCC	Supply	Power input connects to a rectified high voltage source through a current limiting series resistor and filter capacitor to ground. Regulated 13 volt output when the charge pump is active.
2	VOUT	Output	Linear Regulator Output (IXI858 = 5.0V, IXI859 = 3.3V)
3	N/C		No Connect
4	IN	Input	Gate Driver Input
5	GATE	Output	Gate Driver Output. Drives external power MOSFET.
6	GND	Ground	Ground Return
7	VSUP	I/O	Charge Pump Switch Input. Enables / disables the charge pump output. Requires a low ESR capacitor.
8	VCAP	I/O	Charge Pump Switch Output. Rectified charge pump output. Requires a low ESR capacitor.

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
V _{CC}	DC Supply Voltage	-0.4	+20.0	V
V _{OUT}	Logic System Supply Voltage	-0.4	+6.0	٧
V_{IN}	Gate Input Voltage	-0.4	+6.0	V
I _{SUP}	Continuous current into V _{SUP} pin	-200	+200	mA
I _{PEAK}	Peak Current into V _{SUP}	-1	+1	Α
P_D	Power Dissipation		500	mW
T_J	Maximum Junction Temperature		+150	°C
T _{STG}	Storage Temperature	-65	+150	°C

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and affect its reliability.

ESD Warning

ESD (electrostatic discharge) sensitive device. Although the IXI858 / IXI859 feature proprietary ESD protection circuitry, permanent damage may be sustained if subjected to high energy electrostatic discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

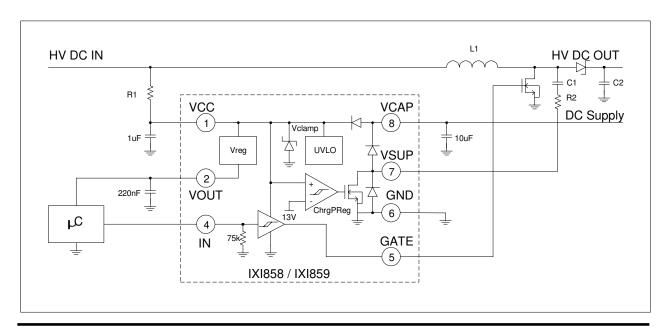
Operating Range

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	UVLO	+17	V
I _{SUP}	Continuous Current in V _{SUP} Pin	0	150	mA
I _{PEAK}	Peak Current in V_{SUP} Pin ($t_P \le 1 \mu S$, $f \le 150 \text{kHz}$)	-750	+750	mA

Electrical Characteristics

 T_A =25°C, V_{CC} =13V unless otherwise specified

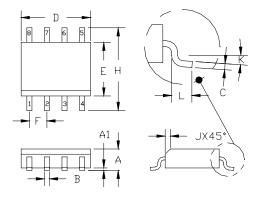
Symbol	Parameter	Parameter Condition		Тур	Max	Units
Supply (V	CC)			•		
I _{CC}	Supply Current	V _{IN} <1V, no load any pin		0.7	1.0	mA
I _{CC2}	Supply Current	1nF GATE load, 300kHz IN signal		5		mA
I _{STBY}	Standby Current	Undervoltage Detected		160		μΑ
V_{CLAMP}	Clamp Voltage	I _{CC} <5mA		17		V
Input (IN)						
V_{TON}	Turn-on Threshold Voltage			1.95		V
V _{TOFF}	Turn-off Threshold Voltage			1.15		V
V _H	Hysteresis		0.5			V
I _{INL}	Input Current Low				20	μΑ
I _{INH}	Input Current High				100	μΑ
Voltage Re	egulator (VOUT)					
V _{OUT}	Voltage Reference	IXI859 I _{OUT} = 10mA	3.20	3.30	3.40	V
V OUT		IXI858 I _{OUT} = 10mA	4.85	5	5.15	V
Reg _{LOAD}	Load Regulation	I _{OUT} change from 10mA to 25mA			50	mV
I	Peak Output Current	V _{OUT} = 1V, IXI859	75			mA
I _{PEAK}		V _{OUT} = 1V, IXI858	100			IIIA
dV_{OUT}	Temp Coefficient	I _{OUT} = 10mA			250	ppm/°C
C _{OUT}	Allowed Capacitive Load	I _{OUT} = 10mA	0.2		2.2	μF
I _{LEAK}	Leakage current in UVLO state	V _{OUT} = 1V			10	μΑ
T _{STARTUP}	Startup Time (V _{OUT} > 3.1V)	C _{OUT} = 1uF			0.1	mS
T _{SETTLE}	Settling Time	C _{OUT} = 1 uF		2		mS
Charge Pu	ımp Regulator					
VCPR _{ON}	Turn-on Level	Measured at VCC		13.15		V
VCPR _{OFF}	Turn-off Level	Measured at VCC		12.85		V
VCPR _{HYS}	Hysteresis			0.30		V
VCPR _{FWD}	Forward Voltage	I _{FWD} = 150mA (VSUP to VCAP)			1.5	V



Electrical Characteristics

T_A=25°C, V_{CC}=13V unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Units
Gate Outp	out (GATE)					
V _{OL}	Output Low Voltage	I _{GATE} = 10mA			0.5	V
V _{OH}	Output High Voltage	I _{GATE} = -10mA	11			V
I _{SINK}	Output Sink Current	$V_{GATE} = 6V$	120			mA
I _{SRC}	Output Source Current	V _{GATE} = 3V	60			mA
V _{OL2}	Output Low Voltage in UVLO state	$V_{CC} = 6V$, $I_{GATE} = 1mA$		0.8		٧
t _{MINPW}	Minimum Output Pulse Width	C _{GATE} = 10pF	80			nS
t _{PD}	IN to GATE propagation delay	C _{GATE} = 10pF		200		nS
Under Vo	Itage Lockout (VCC)					
UVLO _H	UVLO Top Threshold Voltage	VCC Rising		14.1		٧
UVLO _L	UVLO Bottom Threshold Voltage	VCC Falling		8.2		V
V _{HYS}	UVLO Hysteresis			5.9		V


Typical Application Circuit

Package Mechanical Data

8-LEAD SOIC

- 3. MOLDED PACKAGE SHALL CONFORM TO JEDEC STANDARD CONFIGURATION MS-012 VARIATION AA.
- 2 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- (1) CONTROLLING DIMENSIONS: MILLIMETERS.

NOTES: (UNLESS OTHERWISE SPECIFIED)

DIMENSIONS [1]						
DIM.	INCH		MM.		NOTE	
DIM.	MIN.	MAX.	MIN.	MAX.	NUIL	
Α	.0532	.0688	1.35	1.75		
A1	.0040	.0098	.10	.25		
В	.013	.020	.33	.51		
С	.0075	.0098	.19	.25		
D	.1890	.1968	4.80	5.00	2	
E	.1497	.1574	3.80	4.00	2	
F	.050	BSC	1.27	BSC		
Н	.2284	.2440	5.80	6.20		
J	.0099	.0196	.25	.50		
К	0°	8°	0°	8°		
L	.016	.050	.40	1.27		

IXYS Corporation makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS' Standard Terms and Conditions of Sale, IXYS Corporation assumes no liability whatsoever, and disclaims any expressed or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right