: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Symbol TestConditions Characteristic Values

		($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified)			
		min.	typ.	max.	
$\mathrm{BV}_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	1200			V
$\mathrm{V}_{\mathrm{GE} \text { (th) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\mathrm{GE}}$	3		6	V
$\mathrm{I}_{\text {ces }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}} \\ & \text { Note } 1 . \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		50 2.5	$\mu \mathrm{A}$ mA
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	$\begin{aligned} & I_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90},} \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \text { Note } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	$\begin{aligned} & 2.5 \\ & 2.6 \end{aligned}$	3.0	V

$\mathrm{I}_{\mathrm{C} 25}=75 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{CES}}=1200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{CE}(\text { sat })}=3.0 \mathrm{~V}$

TO-268 (IXST)

$\mathrm{G}=\mathrm{Gate}$
$\mathrm{S}=$ Emitter

C = Collector
TAB = Collector

Features

- Epitaxial Silicondriftregion
- fast switching
- small tail current
- MOS gate turn-on for drive simplicity

Applications

- AC motor speed control
- DC servo and robot drives
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- Welding

IXSH 45N120B IXST 45N120B

Symbol
Test Conditions
Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. ${ }^{\text {typ. }} \mid$ max.

$\mathrm{g}_{\text {ts }}$	$\begin{equation*} I_{C}=I_{C 90} ; V_{C E}=10 \mathrm{~V}, \tag{16} \end{equation*}$ Note 2	23	S
$\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	$\mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{r} 3300 \\ 240 \\ 65 \end{array}$	pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}_{\mathrm{CES}}$	120 40 45	nC nC nC
$\begin{aligned} & \mathbf{t}_{\mathrm{d}(\mathrm{On})} \\ & \mathbf{t}_{\mathrm{ri}} \\ & \mathbf{t}_{\mathrm{d}(\mathrm{off})} \\ & \mathbf{t}_{\mathrm{fi}} \\ & \mathbf{E}_{\mathrm{off}} \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}} \mathbf{= 2 5}{ }^{\boldsymbol{\circ}} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=5 \Omega \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}} \end{aligned}$ Note 3	36 27 360 380 13	$\begin{array}{rc} & \mathrm{ns} \\ & \mathrm{~ns} \\ 500 & \mathrm{~ns} \\ 750 & \mathrm{~ns} \\ 22 & \mathrm{~mJ} \end{array}$
$\begin{aligned} & \mathbf{t}_{\mathrm{d}(0 \mathrm{n})} \\ & \mathbf{t}_{\mathrm{ri}} \\ & E_{\mathrm{on}} \\ & \mathbf{t}_{\mathrm{d}(\mathrm{fff})} \\ & \mathbf{t}_{\mathrm{fi}} \\ & \mathrm{E}_{\mathrm{off}} \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Cg0}}, \mathrm{~V}_{G E}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=5 \Omega, \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}} \end{aligned}$ Note 3	38 29 2.9 440 700 22	ns ns mJ ns ns ns
$\begin{aligned} & \mathbf{R}_{\mathrm{thjc}} \\ & \mathbf{R}_{\mathrm{thnck}} \end{aligned}$	(TO-247)	0.25	$\begin{array}{r} 0.42 \mathrm{~K} / \mathrm{W} \\ \mathrm{~K} / \mathrm{W} \end{array}$

Notes: 1. Device must be heatsunk for high temperature leakage current measurements to avoid thermal runaway.
2. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$
3. Switching times may increase for V_{CE} (Clamp) $>0.8 \cdot \mathrm{~V}_{\mathrm{CES}}$, higher T_{J} or increased R_{G}.

TO-247 AD (IXSH) Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	19.81	20.32	0.780	0.800
B	20.80	21.46	0.819	0.845
C	15.75	16.26	0.610	0.640
D	3.55	3.65	0.140	0.144
E	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G	1.65	2.13	0.065	0.084
H	-	4.5	-	0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
M	0.4	0.8	0.016	0.031
N	1.5	2.49	0.087	0.102

TO-268AA (D3 PAK)

Dim.	Millimeter			Inches	
	Min.	Max.	Min.	Max.	
A	4.9	5.1	.193	.201	
$\mathrm{~A}_{1}$	2.7	2.9	.106	.114	
$\mathrm{~A}_{2}$.02	.25	.001	.010	
b	1.15	1.45	.045	.057	
$\mathrm{~b}_{2}$	1.9	2.1	.75	.83	
C	.4	.65	.016	.026	
D	13.80	14.00	.543	.551	
E	15.85	16.05	.624	.632	
E_{1}	13.3	13.6	.524	.535	
e	5.45	BSC	.215	BSC	
H	18.70	19.10	.736	.752	
L	2.40	2.70	.094	.106	
L 1	1.20	1.40	.047	.055	
L 2	1.00	1.15	.039	.045	
L 3	0.25	BSC	.010	BSC	
L 4	3.80	4.10	.150	.161	

