: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Preliminary Technical Information

Depletion Mode MOSFET

$V_{\mathrm{DSX}}=1700 \mathrm{~V}$
$\mathrm{I}_{\mathrm{D}(\text { on })} \geq 1 \mathrm{~A}$
$\mathrm{R}_{\mathrm{DS}(\text { (n) })} \leq 16 \Omega$

N -Channel

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSX }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1700	V
$\mathrm{V}_{\text {DGX }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	1700	V
$\mathrm{V}_{\text {GSX }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 30	V
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	290	W
T_{J}		- $55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		- $55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SoLD }}$	1.6 mm (0.062in.) from Case for 10s	260	${ }^{\circ} \mathrm{C}$
F_{c}	Mounting Force (TO-263HV)	10.. 65 / 22.. 14.6	N/lb
M_{d}	Mounting Torque (TO-247HV)	1.13/10	Nm/lb.in
Weight	TO-263HV	2.5	g
	TO-247HV	6.0	g

G = Gate $\quad \mathrm{D} \quad$ = Drain
$S=$ Source $\quad T a b=$ Drain

Features

- Normally ON Mode
- Molding Epoxies Meet UL94V-0 Flammability Classification

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Audio Amplifiers
- Start-Up Circuits
- Protection Circuits
- Ramp Generators
- Current Regulators
- Active Loads

Safe-Operating-Area Specification

		Characteristic Values		
Symbol	Test Conditions	Min.	Typ.	Max.
SOA	$\mathrm{V}_{\mathrm{DS}}=1700 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{C}}=75^{\circ} \mathrm{C}, \mathrm{Tp}=5 \mathrm{~s}$	170		

Source-Drain Diode

Note 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.

PRELIMANARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or more of the following U.S. patents:	4,860,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478	7,071,537	

Fig. 1. Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$

Fig. 5. Drain Current $@ \mathrm{~T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$

Fig. 2. Extended Output Characteristics @ $\mathbf{T}_{\mathbf{J}}=\mathbf{2 5}^{\mathbf{\circ}} \mathrm{C}$

Fig. 4. Drain Current @ $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Fig. 6. Dynamic Resistance vs. Gate Voltage

Fig. 7. Normalized $\mathrm{R}_{\mathrm{DS}(o n)}$ vs. Junction Temperature

Fig. 9. Input Admittance

Fig. 11. Normalized Breakdown and Threshold
Voltages vs. Junction Temperature

Fig. 8. R $\mathrm{RSS}_{\mathrm{D}(\text { on) }}$ Normalized to $\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ Value vs. Drain Current

Fig. 10. Transconductance

Fig. 12. Forward Voltage Drop of Intrinsic Diode

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Capacitance

Fig. 15. Forward-Bias Safe Operating Area

Fig. 14. Gate Charge

Fig. 16. Forward-Bias Safe Operating Area

Fig. 17. Maximum Transient Thermal Impedance

