: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Voltage Power MOSFET

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {Dss }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1500	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	1500	V
$\mathrm{V}_{\text {Gss }}$	Continuous	± 30	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 40	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	12	A
$\underline{\mathrm{I}_{\mathrm{DM}}}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by T_{JM}	40	A
I_{A}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	6	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	750	mJ
dv/dt	$\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\text {DSS }}, \mathrm{T}_{J} \leq 150^{\circ} \mathrm{C}$	5	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	890	W
		- $55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	1.6 mm (0.062 in.) From Case for 10s	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {soLD }}$	Plastic Body for 10s	260	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting Torque	1.13 / 10	Nm/lb.in.
Weight	TO-268	4.0	g
	TO-247	6.0	g

$\begin{aligned} & \text { Symbol } \quad \text { Test Conditions } \\ & \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text {, Unless Otherwise Specified }\right) \end{aligned}$		Characteristic Values		
		Min.	Typ.	Max.
$\mathrm{BV}_{\mathrm{Dss}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	1500		V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$V_{\text {DS }}=V_{G S}, I_{D}=250 \mu \mathrm{~A}$	2.5		4.5 V
$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$			$\pm 100 \mathrm{nA}$
$\mathrm{I}_{\text {DS }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			$\begin{array}{r} 25 \mu \mathrm{~A} \\ 500 \mu \mathrm{~A} \end{array}$
$\underline{\mathbf{R}_{\text {DS(on) }}}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$, Note 1			2.2Ω

TO-268 (IXTT)

$$
\mathrm{G}=\text { Gate } \quad \mathrm{D}=\text { Drain }
$$

$$
S=\text { Source } \quad \text { Tab }=\text { Drain }
$$

Features

- International Standard Packages
- Molding Epoxies Weet UL 94 V-0 Flammability Classification
- Fast Intrinsic Diode
- Low Package Inductance

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High Voltage Power Supplies
- Capacitor Discharge
- Pulse Circuits

Source-Drain Diode

$\begin{aligned} & \text { Symbol Test Conditions } \\ & \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right. \text {, Unless Otherwise Specified) } \end{aligned}$		Characteristic Values		
		Min. ${ }^{\text {P }}$ Typ.	Max.	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		12	A
$\mathrm{I}_{\text {SM }}$	Repetitive, Pulse Width Limited by T_{JM}		48	A
$\mathrm{V}_{\text {sD }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{S}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1		1.4	V
$\begin{aligned} & \mathbf{t}_{\mathrm{rr}} \\ & \mathrm{I}_{\mathrm{RM}} \\ & \mathbf{Q}_{\mathrm{RM}} \end{aligned}$	$\left\{\begin{array}{l} I_{F}=6 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \\ \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \end{array}\right.$	$\begin{array}{r} 1.2 \\ 24.5 \\ 14.8 \end{array}$		$\mu \mathrm{S}$ A $\mu \mathrm{C}$

Note

1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.

TO-247 Outline

Terminals: 1-Gate 2 - Drain

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A_{2}	4.7	5.3	.185	.209
$\mathrm{~A}_{1}$	2.2	2.54	.087	.102
$\mathrm{~A}_{2}$	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
$\mathrm{~b}_{1}$	1.65	2.13	.065	.084
$\mathrm{~b}_{2}$	2.87	3.12	.113	.123
C	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
e	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L 1		4.50		.177
$\varnothing \mathrm{P}$	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXTT12N150 IXTH12N150

Fig. 1. Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Fig. 3. R $_{\mathrm{DS}(o n)}$ Normalized to $\mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$ Value vs. Junction Temperature

Fig. 5. Maximum Drain Current vs.
Case Temperature

Fig. 2. Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$

Fig. 4. R $\mathrm{RS}_{\mathrm{D}(\mathrm{on})}$ Normalized to $\mathrm{I}_{\mathrm{D}}=6 \mathrm{~A}$ Value vs. Drain Current

Fig. 6. Input Admittance

Fig. 7. Transconductance

Fig. 9. Gate Charge

Fig. 11. Forward-Bias Safe Operating Area

Fig. 8. Forward Voltage Drop of Intrinsic Diode

Fig. 10. Capacitance

Fig. 12. Maximum Transient Thermal Impedance

[^0]
[^0]: IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

