

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

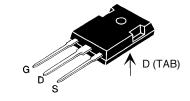
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Standard Power MOSFET

IXTH 30N25


250 **V** 30 A $75 \, \mathbf{m}\Omega$

N-Channel Enhancement Mode

Symbol	Test Conditions	ns Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	250	٧	
V _{DGR}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C; R_{GS} = 1 \text{ M}\Omega$	250	٧	
V _{GS}	Continuous	±20	V	
V_{GSM}	Transient	±30	٧	
I _{D25}	T _c = 25°C	30	Α	
I _{DM}	T_{c} = 25°C, pulse width limited by T_{JM}	120	Α	
I _{AR}		30	Α	
E _{AR}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$	30 1.0	mJ J	
dv/dt	$\begin{array}{ll} I_{_{S}} & \leq I_{_{DM}},di/dt \leq 100A/\mu s,V_{_{DD}} \leq V_{_{DSS}},\\ T_{_{J}} & \leq 150^{\circ}C,R_{_{G}} = 2\Omega \end{array}$	5	V/ns	
$\overline{\mathbf{P}_{D}}$	T _C = 25°C	200	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
M _d	Mounting torque	1.13/10 N	m/lb.in.	
Weight		6	g	
	n lead temperature for soldering 0.062 in.) from case for 10 s	300	°C	

G = GateD = Drain, S = Source,TAB = Drain

Features

- International standard package JEDEC TO-247 AD
- Low $R_{DS\ (on)}$ HDMOS™ process Rugged polysilicon gate cell structure
- High commutating dv/dt rating
- Fast switching times

Symbol Test Conditions **Characteristic Values** $(T_1 = 25^{\circ}C, \text{ unless otherwise specified})$

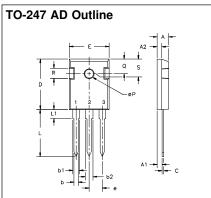
		min.	typ.	max.	
V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	250			٧
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$	2		4	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$			25 250	μ Α μ Α
R _{DS(on)}	V_{GS} = 10 V, I_{D} = 15 A Pulse test, t ≤ 300 μs, duty cycle d ≤ 2 %		55	75	$m\Omega$

Applications

- Switch-mode and resonant-mode power supplies
- Motor controls
- Uninterruptible Power Supplies (UPS)
- DC choppers

Advantages

- Easy to mount with 1 screw (isolated mounting screw hole)
- Space savings
- High power density



Symbol		aracteristic Values otherwise specified)		
	min	. typ.	max.	
g _{fs}	$V_{DS} = 10 \text{ V}; I_D = 15 \text{ A}, \text{ pulse test}$	32	S	
C _{iss})	3950	pF	
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	510	pF	
\mathbf{C}_{rss}		177	pF	
t _{d(on)})	19	ns	
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 30 \text{ A}$	19	ns	
t _{d(off)}	$R_{\rm G} = 3.6 \Omega$ (External)	79	ns	
t,		17	ns	
$\mathbf{Q}_{g(on)}$		136	nC	
Q_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 I_{D25}$	32	nC	
\mathbf{Q}_{gd}	J	52	nC	
R _{thJC}			0.65 K/W	
R _{thCK}		0.25	K/W	

•				
I _s	V _{GS} = 0 V		30	Α
I _{SM}	Repetitive; pulse width limited by $T_{_{\rm JM}}$		120	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0$ V, Pulse test, t ≤ 300 μs, duty cycle d ≤ 2 %		1.5	V
t _{rr}	$I_F = I_S$, -di/dt = 100 A/ μ s, $V_R = 100 \text{ V}$	300		ns
Q _{rr}		3.0		μС

Terminals:	1 - Gate	2 - Drain
	3 - Source	Tab - Drain

Dim.	Mill	imeter	Inches	
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A_1	2.2	2.54	.087	.102
A_2	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b_2	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC