

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

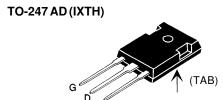
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

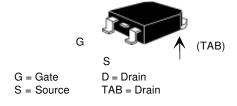
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


High Current Power MOSFET

IXTH 72N20 IXTT 72N20 $V_{DSS} = 200 V \\ I_{D25} = 72 A \\ R_{DS(on)} = 33 m\Omega$


N-Channel Enhancement Mode

Symbol	Test Conditions	Maximun	n Ratings
V _{DSS} V _{DGR}	$T_{_{J}}$ = 25°C to 150°C $T_{_{J}}$ = 25°C to 150°C; $R_{_{GS}}$ = 1 M Ω	200 200	V V
V _{GS} V _{GSM}	Continuous Transient	±20 ±30	V
I _{D25}	T _C = 25°C	72	A
I _{DM}	$T_{\rm C}$ = 25°C, pulse width limited by $T_{\rm JM}$	288	Α
I _{AR}	$T_{c} = 25^{\circ}C$	72	Α
E _{AR}	T _C = 25°C	50	mJ
E _{AS}	$T_{c} = 25^{\circ}C$	1.5	J
dv/dt	$\begin{split} &I_{_{S}} &\leq I_{_{DM}}, di/dt \leq 100 A/\mu s, V_{_{DD}} \leq V_{_{DSS}}, \\ &T_{_{J}} &\leq 150 ^{\circ} C, R_{_{G}} = 2 \Omega \end{split}$	5	V/ns
P_{D}	T _C = 25°C	400	W
T _J		-55 +150	°C
T _{JM} T _{stg}		150 -55 +150	°C °C
T _L	1.6 mm (0.062 in.) from case for 10 s	300	°C
M_d	Mounting torque	1.13/10	Nm/lb.in.
Weight	TO-247 AD TO-268	6 4	g g

TO-268 (IXTT) Case Style

Features

- International standard packages
- Low R_{DS (on)} HDMOS[™] process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
 - easy to drive and to protect

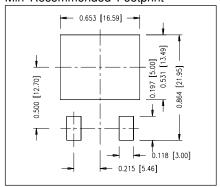
Symbol $(T_J = 25^{\circ}C)$	Test Conditions C, unless otherwise specified)			aracteri ∣Typ.	istic Va Max	
V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250\mu A$		2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$			25 1	μA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$ Pulse test, t \le 300 \mus, duty c	cycle d ≤2%			33	mΩ

Advantages

- Easy to mount
- Space savings
- High power density

© 2003 IXYS All rights reserved DS99019(03/03)

Symbol	Te	st Conditions	(T _J = 25°C,		therwis		
				IVIII I.	Тур.	IVIAX.	
g _{fs}	V _{DS}	$I_{\rm S} = 10 \text{ V}; I_{\rm D} = 0.5 I_{\rm D25}, \text{ puls}$	e test	30	40		S
C _{iss})				4400		рF
\mathbf{C}_{oss}	\ V _{GS}	$_{S} = 0 \text{ V}, \text{ V}_{DS} = 25 \text{ V}, \text{ f} = 1$	MHz		950		pF
\mathbf{C}_{rss}	J				330		pF
t _{d(on)})				24		ns
t _r	V _{GS}	$_{\rm S}$ = 10 V, $V_{\rm DS}$ = 0.5 $V_{\rm DSS}$, $I_{\rm DSS}$	$_{\rm D} = 0.5 \; {\rm I}_{\rm D25}$		30		ns
$\mathbf{t}_{d(off)}$	$R_{\rm G}$	= 2Ω (External)			80		ns
t _f	J				20		ns
$\overline{\mathbf{Q}}_{g(on)}$)				170		nC
\mathbf{Q}_{gs}	\ V _{GS}	$_{\rm S}$ = 10 V, $V_{\rm DS}$ = 0.5 $V_{\rm DSS}$, $I_{\rm DSS}$	$_{\rm D} = 0.5 \; {\rm I}_{\rm D25}$		40		nC
\mathbf{Q}_{gd}	J				105		nC
R _{thJC}						0.31	K/W
\mathbf{R}_{thCK}	(TC	D-247)			0.25		K/W

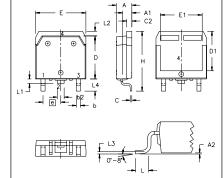

Source-Drain Diode

Characteristic Values

 $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$

Symbol		Test Conditions	min.	typ.	max.	,
I _s		$V_{GS} = 0 \text{ V}$			72	Α
I _{SM}		Repetitive			288	Α
V _{SD}		$I_F = I_S$, $V_{GS} = 0$ V, Pulse test, t ≤ 300 µs, duty cycle d ≤ 2 %			1.5	V
T _{rr})	I _F = 25A		200		ns
Q _{RM}	<u>}</u>	$-di/dt = 100 \text{ A/}\mu\text{s}$ $V_{R} = 100 \text{V}$		2.6		μС

Min Recommended Footprint


IXYS reserves the right to change limits, test conditions, and dimensions.

TO-247 AD Outline

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

Dim.	Millimeter		Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A,	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

TO-268 Outline

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

INCH	łES	MILLIN	METERS
MIN	MAX	MIN	MAX
.193	.201	4.90	5.10
.106	.114	2.70	2.90
.001	.010	0.02	0.25
.045	.057	1.15	1.45
.075	.083	1.90	2.10
.016	.026	0.40	0.65
.057	.063	1.45	1.60
.543	.551	13.80	14.00
.488	.500	12.40	12.70
.624	.632	15.85	16.05
.524	.535	13.30	13.60
.215 BSC		5.45 BSC	
.736	.752	18.70	19.10
.094	.106	2.40	2.70
.047	.055	1.20	1.40
.039	.045	1.00	1.15
.010	D BSC 0.25 BSC		BSC
.150	.161	3.80	4.10
	MIN .193 .106 .001 .045 .075 .016 .057 .543 .488 .624 .215 .736 .094 .047 .039 .010	.193 .201 .106 .114 .001 .010 .045 .057 .075 .083 .016 .026 .057 .063 .543 .551 .488 .500 .624 .632 .524 .535 .215 BSC .094 .106 .047 .055 .039 .045	MIN MAX MIN .193 .201 4.90 .106 .114 2.70 .001 .010 .002 .045 .057 1.15 .075 .083 1.90 .016 .026 0.40 .057 .063 1.45 .543 .551 13.80 .488 .500 12.40 .624 .632 15.85 .524 .535 13.30 .215 BSC 5.45 .736 .752 18.70 .094 .106 2.40 .047 .055 1.20 .039 .045 1.00 .010 BSC 0.25