: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Current MegaMOS ${ }^{\text {TM }}$ FET

N-Channel Enhancement Mode

Symbol	Test conditions	Maximum ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	100	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega$	100	V
$\mathrm{V}_{\text {GS }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ MOSFET chip capability	250	A
$\mathrm{I}_{\mathrm{D} \text { (RMS) }}$	External lead current limit	75	A
I_{DM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, pulse width limited by T_{JM}	1000	A
$\mathrm{I}_{\text {AR }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	90	A
$\mathrm{E}_{\text {AR }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	80	mJ
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	4.0	J
dv/dt	$\begin{array}{ll} \mathrm{I}_{\mathrm{S}} & \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{di} / \mathrm{dt} \leq 100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}} \\ \mathrm{~T}_{J} \leq 150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=2 \Omega \end{array}$	5	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	730	W
T_{J}		.. +150	${ }^{\circ} \mathrm{C}$
T_{JM}		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$.. +150	${ }^{\circ} \mathrm{C}$
T_{L}	1.6 mm (0.063 in.) from case for 10 s	300	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque	0.7/6	Nm/lb.in.
Weight	TO-264	10	g

Symbol Test Conditions

($\mathrm{T}_{\mathrm{J}}=2$	unless otherwise specified)	Min.	Typ.	Max.
$\mathrm{V}_{\mathrm{DSs}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	100		V
$\mathrm{V}_{\text {GS(th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2.0		4.0 V
$\mathrm{I}_{\text {Gss }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} D C, \mathrm{~V}_{\mathrm{DS}}=0$			$\pm 200 \mathrm{nA}$
$\mathrm{I}_{\text {DSS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSS}} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{rr} 50 & \mu \mathrm{~A} \\ 1 & \mathrm{~mA} \end{array}$
$\mathrm{R}_{\mathrm{DS}(\text { on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=90 \mathrm{~A}$ Pulse test, $\mathrm{t} \leq 300 \mathrm{~ms}$, duty	le $d \leq 2 \%$		$5 \mathrm{~m} \Omega$

IXTK 250N10

TO-264 AA (IXTK)

$\mathrm{G}=$ Gate $\quad \mathrm{D}=$ Drain
$S=$ Source \quad Tab $=$ Drain

Features

- Low $\mathrm{R}_{\mathrm{DS}(\text { on) }} \mathrm{HDMOS}^{\text {TM }}$ process - Rugged polysilicon gate cell structure
- International standard package
- Fast switching times

Applications

- Motor controls
- DC choppers
- Switched-mode power supplies
- DC-DC Converters
- Linear Regulators

Advantages

- Easy to mount with one screw (isolated mounting screw hole)
- Space savings
- High power density

Symbol Test Conditions

($\mathrm{T}_{\mathrm{j}}=$	unless otherwise specified) Min.	Typ.	Max.
$\mathrm{g}_{\text {ts }}$	$\mathrm{V}_{\text {DS }}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=90 \mathrm{~A}$, pulse test $\quad 75$	110	S
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	$\} \mathrm{v}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{v}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{r} 12700 \\ 3700 \\ 1490 \end{array}$	pF pF pF
$\begin{aligned} & t_{\text {dol(on) }} \\ & t_{r} \\ & t_{\text {dolf) }} \\ & t_{t} \end{aligned}$		$\begin{array}{r} 35 \\ 40 \\ 120 \\ 55 \end{array}$	ns ns ns ns
$\begin{aligned} & \mathbf{Q}_{\mathrm{glon})} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	$\} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25}$	430 70 225	nC nc nC
$\begin{aligned} & \mathbf{R}_{\mathrm{thuc}} \\ & \mathbf{R}_{\mathrm{thck}} \end{aligned}$		0.15	$\begin{array}{r} 0.17 \text { KW } \\ \text { KW } \end{array}$

Source-Drain Diode

Ratings and Characteristics
($T_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Test Conditions	Min.	Typ.	Max.	
\mathbf{I}_{s}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		250	A	
\mathbf{I}_{SM}	Repetitive; pulse width limited by T_{JM}		1000	A	
\mathbf{V}_{SD}	$\mathrm{I}_{\mathrm{F}}=90 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$,				
	Pulse test, $\mathrm{t} \leq 300 \mathrm{~s}$, duty cycle $\mathrm{d} \leq 2 \%$		1.2	V	
\mathbf{t}_{rr}	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$				
\mathbf{Q}_{rr}		150		ns	

Min. Typ. Max.

TO-264 AA Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.82	5.13	.190	.202
A1	2.54	2.89	.100	.114
A2	2.00	2.10	.079	.083
b	1.12	1.42	.044	.056
b1	2.39	2.69	.094	.106
b2	2.90	3.09	.114	.122
c	0.53	0.83	.021	.033
D	25.91	26.16	1.020	1.030
E	19.81	19.96	.780	.786
e	5.46 BSC	.215 BSC		
J	0.00	0.25	.000	.010
K	0.00	0.25	.000	.010
L	20.32	20.83	.800	.820
L1	2.29	2.59	.090	.102
P	3.17	3.66	.125	.144
Q	6.07	6.27	.239	.247
Q1	8.38	8.69	.330	.342
R	3.81	4.32	.150	.170
R1	1.78	2.29	.070	.090
S	6.04	6.30	.238	.248
T	1.57	1.83	.062	.072

IXYS reserves the right to change limits, test conditions, and dimensions

Fig. 1. Output Characteristics
@ $\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics
@ $\mathbf{1 2 5}^{\circ} \mathrm{C}$

Fig. 5. Drain Current vs. Case Temperature

Fig. 2. Extended Output Characteristics @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 4. Norm alized $\mathrm{R}_{\mathrm{DS}(o n)} \mathrm{vs}$. Junction Temperature

Fig. 6. Input Admittance

Fig. 7. Transconductance

Fig. 9. Gate Charge

Fig. 11. Forw ard-Bias
Safe Operating Area

Fig. 8. Source Current vs
Source-To-Drain Voltage

Fig. 10. Capacitance

Fig. 12. Maxim um Transient Thermal Resistance

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered by one or more	$4,850,072$	$4,931,844$	$5,034,796$	$5,063,307$	$5,237,481$	$5,381,025$	$6,404,065 B 1$	$6,162,665$	$6,534,343$	$6,583,505$
of the following U.S. patents:	$4,835,592$	$4,881,106$	$5,017,508$	$5,049,961$	$5,187,117$	$5,486,715$	$6,306,728 B 1$	$6,259,123 B 1$	$6,306,728 B 1$	$6,683,344$

