## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Voltage
Power MOSFET

N-Channel Enhancement Mode
Avalanche Rated
Fast Intrinsic Diode

## IXTA3N120 IXTP3N120 IXTH3N120



| Symbol | Test Conditions | Maximum Ratings |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {DSs }}$ | $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ | 1200 | V |
| $\mathrm{V}_{\text {DGR }}$ | $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$ | 1200 | V |
| $\mathrm{V}_{\text {GSs }}$ | Continuous | $\pm 20$ | V |
| $\mathrm{V}_{\text {GSM }}$ | Transient | $\pm 30$ | V |
| $\mathrm{I}_{\mathrm{D} 25}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 3 | A |
| $\underline{I_{\text {m }}}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by $\mathrm{T}_{\mathrm{JM}}$ | 12 | A |
| $\mathrm{I}_{\mathrm{A}}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 3 | A |
| $\mathrm{E}_{\text {AS }}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 700 | mJ |
| dv/dt | $\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$ | 5 | V/ns |
| $\mathrm{P}_{\mathrm{D}}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 200 | W |
| TJ |  | $-55 \ldots+150$ | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {JM }}$ |  | 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ |  | $-55 \ldots+150$ | ${ }^{\circ} \mathrm{C}$ |
| T | Maximum Lead Temperature for Soldering | g 300 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {soLD }}$ | 1.6 mm (0.062in.) from Case for 10s | 260 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{F}_{\mathrm{c}}$ | Mounting Force (TO-263) | 10.. 65 / 2.2..14.6 | N/Ib |
| $\mathrm{M}_{\mathrm{d}}$ | Mounting Torque (TO-247 \& TO-220) | 1.13 / 10 | Nm/lb.in |
| Weight | TO-263 | 2.5 | g |
|  | TO-220 | 3.0 | g |
|  | TO-247 | 6.0 | g |


$\mathrm{V}_{\text {DSs }}=1200 \mathrm{~V}$
$\mathrm{I}_{\mathrm{D} 25}=3 \mathrm{~A}$
$\mathrm{R}_{\mathrm{DS}(\text { on })} \leq 4.5 \Omega$

TO-263 AA (IXTA)


TO-220AB (IXTP)


TO-247 (IXTH)


| $\mathrm{G}=$ Gate | $\mathrm{D}=$ Drain |
| :--- | :--- |
| $\mathrm{S}=$ Source | Tab $=$ Drain |

## Features

- International Standard Packages
- High Voltage Package
- Fast Intrinsic Diode
- Avalanche Rated
- Molding Epoxies meet UL 94 V-0 Flammability Classification
- High Blocking Voltage


## Advantages

- Easy to Mount
- Space Savings
- High Power Density


## Applications

- High Voltage Power Supplies
- Capacitor Discharge Applications
- Pulse Circuits



## Source-Drain Diode

| $\begin{aligned} & \text { Symbol Test Conditions } \\ & \left(T_{j}=25^{\circ} \mathrm{C}\right. \text {, Unless Otherwise Specified) } \end{aligned}$ |  | Characteristic Values |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. ${ }^{\text {Typ. }}$ | Max |  |
| $\mathrm{I}_{\text {s }}$ | $\mathrm{V}_{\text {GS }}=0 \mathrm{~V}$ |  | 3 | A |
| $\underline{I_{\text {SM }}}$ | Repetitive, Pulse Width Limited by $\mathrm{T}_{\mathrm{JM}}$ |  | 12 | A |
| $\mathrm{v}_{\text {sD }}$ | $\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1 |  | 1.5 | V |
| $t_{\text {rr }}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} \end{aligned}$ | 700 |  | ns |

Note 1: Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.


IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

| IXYS MOSFETs and IGBTs are covered | 4,835,592 | 4,931,844 | 5,049,961 | 5,237,481 | 6,162,665 | 6,404,065B1 | 6,683,344 | 6,727,585 | 7,005,734B2 | 7,157,338B2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| by one or more of the following U.S. patents: | 4,860,072 | 5,017,508 | 5,063,307 | 5,381,025 | 6,259,123B1 | 6,534,343 | 6,710,405B2 | 6,759,692 | 7,063,975B2 |  |
|  | 4,881,106 | 5,034,796 | 5,187,117 | 5,486,715 | 6,306,728B1 | 6,583,505 | 6,710,463 | 6,771,478B2 | 7,071,537 |  |

Fig. 1. Output Characteristics $@ \mathrm{~T}_{\mathrm{J}}=\mathbf{2 5}^{\circ} \mathrm{C}$


Fig. 3. Output Characteristics $@ \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$


Fig. 5. $R_{\mathrm{DS}(\mathrm{on})}$ Normalized to $\mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$ Value
vs. Drain Current


Fig. 2. Extended Output Characteristics $@ \mathrm{~T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$


Fig. 4. $\mathrm{R}_{\mathrm{DS}(o n)}$ Normalized to $\mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$ Value vs.
Junction Temperature


Fig. 6. Maximum Drain Current vs. Case Temperature


Fig. 7. Input Admittance


Fig. 9. Forward Voltage Drop of Intrinsic Diode


Fig. 11. Capacitance


Fig. 8. Transconductance


Fig. 10. Gate Charge


Fig.12. Forward-Bias Safe Operating Area


Fig. 13. Maximum Transient Thermal Impedance


