: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

PolarHV ${ }^{\text {TM }}$ Power MOSFET

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	500	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	500	V
$\mathrm{V}_{\text {Gss }}$	Continuos	± 30	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 40	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	26	A
$\underline{I_{\text {d }}}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, pulse width limited by T_{JM}	78	A
$\mathrm{I}_{\text {AR }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	26	A
$\mathrm{E}_{\text {AR }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	40	mJ
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	1.0	J
dv/dt	$\begin{aligned} & \mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{di} / \mathrm{dt} \leq 100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=4 \Omega \end{aligned}$	10	V/ns
P_{D}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	400	W
$\mathrm{T}_{\text {J }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		+ 150	${ }^{\circ} \mathrm{C}$
$\underline{T_{\text {stg }}}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	1.6 mm (0.062 in.) from case for 10 s	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOLD }}$	Plastic body for 10 s	260	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque (TO-3P)	1.13/10	Nm/lb.in.
Weight	TO-3P	6	g
	TO-268	5.5	g
	PLUS220 \& PLUS220SMD	5	g

IXTQ 26N50P IXTT 26N50P IXTV 26N50P IXTV 26N50PS

$\mathrm{V}_{\text {Dss }}$	500	V
$\mathrm{I}_{\mathrm{D} 25}$	26	A
$\mathrm{R}_{\mathrm{DS}(\text { (on) }}$	230	$\mathrm{m} \Omega$

TO-3P (IXTQ)

TO-268 (IXTT)

PLUS220SMD (IXTV_S)

$$
\begin{array}{ll}
\mathrm{G}=\mathrm{Gate} & \mathrm{D}=\text { Drain } \\
\mathrm{S}=\text { Source } & \mathrm{TAB}=\text { Drain }
\end{array}
$$

Features

International standard packages
' Unclamped Inductive Switching (UIS) rated
' Low package inductance

- easy to drive and to protect

Advantages
I Easy to mount
' Space savings
High power density

IXTQ 26N50P IXTT 26N50P IXTV 26N50P IXTV26N50PS

Symbol
Test Conditions

Characteristic Values ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified) Min. ${ }^{\text {Typ. }}$ Max.

$\mathrm{g}_{\text {fs }}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25}$, pulse test	24	31	S
$\begin{aligned} & C_{\text {iss }} \\ & C_{\text {oss }} \\ & C_{\text {rss }} \end{aligned}$	\} $V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 3600 \\ 380 \\ 48 \end{array}$	pF pF pF
$\begin{aligned} & t_{d(o n)} \\ & t_{r} \\ & t_{d(\text { off })} \\ & t_{f} \end{aligned}$			20 25 58 20	ns ns ns ns
$\begin{aligned} & \overline{\left.\mathbf{Q}_{\mathrm{g}(o n)}\right)} \\ & \mathbf{Q}_{\mathrm{gs}} \\ & \mathbf{Q}_{\mathrm{gd}} \end{aligned}$	\} $\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25}$		65 18 20	nC nC nC
$\begin{aligned} & \mathbf{R}_{\mathrm{th} \mathrm{~s}} \\ & \mathbf{R}_{\mathrm{thcs}} \end{aligned}$			0.21	$\begin{array}{ll} 0.31 & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$

Characteristic Values ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Min. Typ. Max.

Symbol

Test Conditions

$I_{\text {s }}$	$\mathrm{V}_{\text {Gs }}=0 \mathrm{~V}$		26	A
$I_{\text {SM }}$	Repetitive		104	A
$\mathrm{V}_{\text {sD }}$	$I_{F}=I_{S}, V_{G S}=0 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\mathrm{d} \leq 2 \%$		1.5	V
$t_{\text {rr }}$ $Q_{\text {RM }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 300 \\ 3.3 \end{array}$		ns $\mu \mathrm{C}$

PLUS220SMD (IXTV_S) Outline

1. GAIE
2. DRAIN (COLECTOR)

SOURCE (EMITTER)
DRAIN (COUECTOR)

PLUS220 (IXTV) Outline

SYM	INCHES		MILLIMETER	
	MIN	MAX	MIN	MAX
A	. 169	. 185	4.30	4.70
A 1	.028	. 035	0.70	0.90
A2	. 098	. 118	2.50	3.00
b	. 035	. 047	0.90	1.20
b1	. 080	. 095	2.03	2.41
b2	. 054	. 064	1.37	1.63
c	.028	. 035	0.70	0.90
D	. 551	. 591	14.00	15.00
D 1	. 512	. 539	13.00	13.70
E	. 394	. 433	10.00	11.00
E1	. 331	. 346	8.40	8.80
e	.100BSC		2.54 BSC	
L	. 512	. 551	13.00	14.00
L 1	. 118	. 138	3.00	3.50
L2	. 035	. 051	0.90	1.30
L3	. 047	. 059	1.20	1.50

Fig. 1. Output Characteristics
@ $25^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics @ $125^{\circ} \mathrm{C}$

Fig. 5. $R_{D S(o n)}$ Normalized to $I_{D}=13 A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ $25^{\circ} \mathrm{C}$

Fig. 4. $R_{D S(o n)}$ Normalized to $I_{D}=13 \mathrm{~A}$ Value vs. Junction Temperature

Fig. 6. Maximum Drain Current vs.
Case Temperature

IXTQ 26N50P IXTT 26N50P IXTV 26N50P IXTV26N50PS

Fig. 7. Input Admittance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Forward-Bias Safe Operating Area

IXTQ 26N50P IXTT 26N50P IXTV 26N50P IXTV26N50PS

Fig. 13. Maximum Transient Thermal Resistance

TO-268 (IXTT) Outline

