## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

X2-Class Power MOSFET

## N-Channel Enhancement Mode Avalanche Rated



| Symbol | Test Conditions | Maximum Ratings |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {DSs }}$ | $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ | 650 | V |
| $\mathrm{V}_{\text {DGR }}$ | $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$ | 650 | V |
| $V_{\text {Gss }}$ | Continuous | $\pm 30$ | V |
| $\mathrm{V}_{\text {GSM }}$ | Transient | $\pm 40$ | V |
| $\mathrm{I}_{\mathrm{D} 25}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 102 | A |
| $\underline{\mathrm{I}_{\text {D }}}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by $\mathrm{T}_{\text {JM }}$ | 204 | A |
| $\mathrm{I}_{\mathrm{A}}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 25 | A |
| $\mathrm{E}_{\text {AS }}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 3 | $J$ |
| $\mathrm{P}_{\mathrm{D}}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 1040 | W |
| dv/dt | $\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\text {DSS }}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$ | 15 | $\mathrm{V} / \mathrm{ns}$ |
| $\mathrm{T}_{\mathrm{J}}$ |  | $-55 \ldots+150$ | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {JM }}$ |  | 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ |  | $-55 \ldots+150$ | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Maximum Lead Temperature for Soldering | 300 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {sold }}$ | Plastic Body for 10s | 260 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{M}_{\mathrm{d}}$ | Mounting Torque (TO-264P) | 1.13/10 | Nm/lb.in |
| $\mathrm{F}_{\mathrm{c}}$ | Mounting Force (PLUS247) | 20.. $120 / 4.5 . .27$ | N/lb |
| Weight | TO-264P | 10 | g |
|  | PLUS247 | 6 | g |


| Symbol Test Conditions <br> ( $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified) |  | Characteristic Values |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |
| $\mathrm{BV}_{\text {DSs }}$ | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ | 650 |  | V |
| $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ | 3.0 |  | 5.0 V |
| $\mathrm{I}_{\text {Gss }}$ | $\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |  |  | $\pm 100 \mathrm{nA}$ |
| $\mathrm{I}_{\text {DS }}$ | $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  |  | $\begin{array}{rr} 25 & \mu \mathrm{~A} \\ 350 & \mu \mathrm{~A} \\ \hline \end{array}$ |
| $\mathrm{R}_{\text {DS(on) }}$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D}}$ |  |  | $30 \mathrm{~m} \Omega$ |

$V_{D S S}=650 \mathrm{~V}$
$I_{D 25}=102 \mathrm{~A}$
$R_{D S(\text { on })} \leq 30 \mathrm{~m} \Omega$


PLUS247 (IXTX)


G = Gate $\quad \mathrm{D}=$ Drain
$S=$ Source $\quad T a b=$ Drain

## Features

- International Standard Packages
- Low $Q_{G}$
- Avalanche Rated
- Low Package Inductance


## Advantages

- High Power Density
- Easy to Mount
- Space Savings


## Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

| Symbol Test Conditions$\left(T_{j}=25^{\circ} \mathrm{C}\right.$, Unless Otherwise Specified) |  | Characteristic Values |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max |
| $\mathrm{g}_{\mathrm{fs}}$ | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$, Note 1 | 50 | 82 | S |
| $\mathrm{R}_{\text {Gi }}$ | Gate Input Resistance |  | 0.7 | $\Omega$ |
| $\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\mathrm{oss}} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  | $\begin{array}{r} 10.9 \\ 6100 \\ 12.6 \end{array}$ | nF pF pF |
| $\begin{aligned} & \mathrm{C}_{o(e r)} \\ & \mathrm{C}_{\mathrm{o}(\mathrm{r})} \end{aligned}$ | Effective Output Capacitance <br> Energy related $\} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ <br> Time related $\quad\} \mathrm{V}_{\mathrm{DS}}=0.8 \cdot \mathrm{~V}_{\mathrm{DSS}}$ |  | $\begin{array}{r} 367 \\ 1420 \end{array}$ | pF pF |
| $\begin{aligned} & t_{d(\text { on })} \\ & t_{r} \\ & t_{d(\text { ffi })} \\ & t_{f} \end{aligned}$ | Resistive Switching Times $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25} \\ & \mathrm{R}_{\mathrm{G}}=2 \Omega \text { (External) } \end{aligned}$ |  | 37 28 67 11 | ns ns ns ns |
| $\begin{aligned} & \left.\mathbf{Q}_{\mathrm{g}(o n)}\right) \\ & \mathbf{Q}_{\mathrm{gs}} \\ & \mathbf{Q}_{\mathrm{gd}} \\ & \hline \end{aligned}$ | $V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$ |  | $\begin{array}{r} 152 \\ 57 \\ 33 \end{array}$ | nC nC nC |
| $\begin{aligned} & \mathbf{R}_{\mathrm{th} J \mathrm{c}} \\ & \mathbf{R}_{\mathrm{thCs}} \end{aligned}$ |  |  | 0.15 | $\begin{array}{r} 0.12^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$ |

## Source-Drain Diode

| $\begin{aligned} & \text { Symbol } \quad \text { Test Conditions } \\ & \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text {, Unless Otherwise Specified }\right) \end{aligned}$ |  | Characteristic Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |
| $\mathrm{I}_{\text {s }}$ | $\mathrm{V}_{\text {GS }}=0 \mathrm{~V}$ |  |  | 102 | A |
| $\mathrm{I}_{\text {SM }}$ | Repetitive, Pulse Width Limited by $\mathrm{T}_{\mathrm{JM}}$ |  |  | 408 | A |
| $\mathrm{V}_{\text {SD }}$ | $\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\text {S }}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1 |  |  | 1.4 | V |
| $\begin{aligned} & \mathrm{t}_{\mathrm{rr}} \\ & \mathrm{Q}_{\mathrm{RM}} \\ & \mathrm{I}_{\mathrm{RM}} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=51 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ |  | $\begin{array}{r} 450 \\ 11.7 \\ 52 \end{array}$ |  | ns $\mu \mathrm{C}$ A |

Note 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.


PLUS247 ${ }^{\text {TM }}$ Outline


Terminals:
1-Gate
2,4 - Drain
3 - Source

| SYM | INCHES |  | MILLIMETERS |  |
| :--- | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | .190 | .205 | 4.83 | 5.21 |
| A1 | .090 | .100 | 2.29 | 2.54 |
| A2 | .075 | .085 | 1.91 | 2.16 |
| b | .045 | .055 | 1.14 | 1.40 |
| b2 | .075 | .087 | 1.91 | 2.20 |
| b4 | .115 | .126 | 2.92 | 3.20 |
| C | .024 | .031 | 0.61 | 0.80 |
| D | .819 | .840 | 20.80 | 21.34 |
| D1 | .650 | .690 | 16.51 | 17.53 |
| D2 | .035 | .050 | 0.89 | 1.27 |
| E | .620 | .635 | 15.75 | 16.13 |
| E1 | .520 | .560 | 13.08 | 14.22 |
| e | .215 BSC |  | 5.45 | BSC |
| L | .780 | .810 | 19.81 | 20.57 |
| L1 | .150 | .170 | 3.81 | 4.32 |
| Q | .220 | .244 | 5.59 | 6.20 |
| R | .170 | .190 | 4.32 | 4.83 |

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

| IXYS MOSFETs and IGBTs are covered | 4,835,592 | 4,931,844 | 5,049,961 | 5,237,481 | 6,162,665 | 6,404,065 B1 | 6,683,344 | 6,727,585 | 7,005,734 B2 | 7,157,338B2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| by one or more of the following U.S. patents: | 4,860,072 | 5,017,508 | 5,063,307 | 5,381,025 | 6,259,123 B1 | 6,534,343 | 6,710,405 B2 | 6,759,692 | 7,063,975 B2 |  |
|  | 4,881,106 | 5,034,796 | 5,187,117 | 5,486,715 | 6,306,728 B1 | 6,583,505 | 6,710,463 | 6,771,478 B2 | 7,071,537 |  |

Fig. 1. Output Characteristics @ $\mathrm{T}_{\boldsymbol{J}}=\mathbf{2 5}^{\circ} \mathrm{C}$


Fig. 3. Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$


Fig. 5. R $\mathrm{R}_{\mathrm{DS}(o n)}$ Normalized to $\mathrm{I}_{\mathrm{D}}=51 \mathrm{~A}$ Value vs. Drain Current


Fig. 2. Extended Output Characteristics @ $\mathbf{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$


Fig. 4. $\mathrm{R}_{\mathrm{DS}(o n)}$ Normalized to $\mathrm{I}_{\mathrm{D}}=51 \mathrm{~A}$ Value vs. Junction Temperature


Fig. 6. Normalized Breakdown \& Threshold Voltages vs. Junction Temperature


Fig. 7. Maximum Drain Current vs. Case Temperature


Fig. 9. Transconductance


Fig. 11. Gate Charge


Fig. 8. Input Admittance


Fig. 10. Forward Voltage Drop of Intrinsic Diode


Fig. 12. Capacitance


IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Output Capacitance Stored Energy


Fig. 14. Forward-Bias Safe Operating Area


Fig. 15. Maximum Transient Thermal Impedance


