: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Voltage XPT ${ }^{\text {M }}$
 IGBT

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	4500	V
$\mathrm{V}_{\text {cGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	4500	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	95	A
$\mathrm{I}_{\mathrm{C} 110}$	$\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$	40	A
$\mathrm{I}_{\text {cm }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	350	A
SSOA (RBSOA)	$V_{G E}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=10 \Omega$ Clamped Inductive Load	$\begin{array}{r} \mathrm{I}_{\mathrm{CM}}=120 \\ 3600 \end{array}$	A V
P_{c}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	660	W
T ${ }_{\text {J }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering	g 300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sold }}$	1.6 mm (0.062in.) from Case for 10s	260	${ }^{\circ} \mathrm{C}$
F_{c}	Mounting Force 20.	20..120/4.5.. 27	N/lb
Weight		6	g

Symbol Test Conditions ($T_{j}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified)			Characteristic Values		
			Min.	Typ.	Max.
$\mathrm{BV}_{\text {cES }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		4500		V
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$		3.0		5.0 V
$\mathrm{I}_{\text {ces }}$	$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\text {CES }}, \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			$\begin{array}{rr} 25 & \mu \mathrm{~A} \\ 1.25 \mathrm{~mA} \end{array}$
$\overline{\mathrm{I}} \mathrm{GES}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$				$\pm 200 \mathrm{nA}$
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$, Note 1			3.2	3.9 V
$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$				4.0	V

$\mathrm{V}_{\text {CES }}=4500 \mathrm{~V}$ $=40 \mathrm{~A}$
 $\mathrm{V}_{\mathrm{CE}(\text { sat) })} \leq 3.9 \mathrm{~V}$

TO-247PLUS-HV

Features

- High Voltage Package
- High Blocking Voltage
- High Peak Current Capability
- Low Saturation Voltage

Advantages

- Low Gate Drive Requirement
- High Power Density

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- Uninterruptible Power Supplies (UPS)
- Laser Generators
- Capacitor Discharge Circuits
- AC Switches

Note: 1. Pulse test, $\mathrm{t}<300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d}<2 \%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247PLUS-HV Outline				
SYM	INCHES		MILIMETERS	
	MIN	MAX	MIN	MAX
A	. 193	. 201	4.90	5.10
A1	. 114	.122	2.90	3.10
A2	. 075	. 083	1.90	2.10
A3	. 035	. 043	0.90	1.10
b	. 053	. 059	1.35	1.50
b1	. 075	. 083	1.90	2.10
c	. 022	. 030	0.55	0.75
D	. 819	. 843	20.80	21.40
D1	. 638	. 646	16.20	16.40
D2	. 134	. 146	3.40	3.70
D3	. 055	. 063	1.40	1.60
E	. 622	. 638	15.80	16.20
E1	. 520	. 528	13.20	13.40
E2	. 118	. 126	3.00	3.20
E3	. 051	. 059	1.30	1.50
e		BSC	2.54	BSC
e1		BSC	7.62	BSC
L	. 732	. 748	18.60	19.00
L1	. 106	. 118	2.70	3.00
Q	. 216	. 224	5.50	5.70
R	. 165	. 169	4.20	4.30

Fig. 1. Output Characteristics $@ \mathrm{~T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics $@ \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$

Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage

Fig. 2. Extended Output Characteristics $@ \mathrm{~T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Fig. 4. Dependence of $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ on Junction Temperature

Fig. 6. Input Admittance

Fig. 7. Transconductance

Fig. 9. Capacitance

Fig. 8. Gate Charge

Fig. 10. Reverse-Bias Safe Operating Area

Fig. 11. Maximum Transient Thermal Impedance

IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.

