

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

J309, J310

Preferred Device

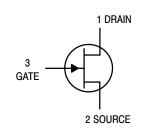
JFET VHF/UHF Amplifiers

N-Channel — Depletion

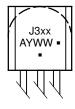
Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate - Source Voltage	V _{GS}	25	Vdc
Forward Gate Current	I _{GF}	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above = 25°C	P _D	350 2.8	mW mW/°C
Junction Temperature Range	TJ	-65 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

J3xx = Device Code

xx = 09 or 10

= Assembly Location

= Year

= Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

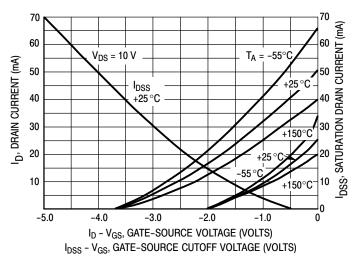
Preferred devices are recommended choices for future use and best overall value.

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

J309, J310

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•	•	•	•
Gate – Source Breakdown Voltage $(I_G = -1.0 \mu Adc, V_{DS} = 0)$		$V_{(BR)GSS}$	-25	-	_	Vdc
Gate Reverse Current $ \begin{array}{l} (V_{GS}=-15 \ Vdc, \ V_{DS}=0, \ T_A=25^{\circ}C) \\ (V_{GS}=-15 \ Vdc, \ V_{DS}=0, \ T_A=+125^{\circ}C) \end{array} $		I _{GSS}	_ _	_ _	-1.0 -1.0	nAdc μAdc
Gate Source Cutoff Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 1.0 \text{ nAdc})$	J309 J310	$V_{GS(off)}$	-1.0 -2.0	_ _	-4.0 -6.5	Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current ⁽¹⁾ (V _{DS} = 10 Vdc, V _{GS} = 0)	J309 J310	I _{DSS}	12 24	- -	30 60	mAdc
Gate-Source Forward Voltage (V _{DS} = 0, I _G = 1.0 mAdc)		V _{GS(f)}	_	-	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	•		•	•	•	•
Common–Source Input Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)	J309 J310	Re(y _{is})	_ _	0.7 0.5	_ _	mmhos
Common–Source Output Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)		Re(y _{os})	_	0.25	-	mmhos
Common–Gate Power Gain $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 100 \text{ MHz})$		G_{pg}	_	16	_	dB
Common–Source Forward Transconductance ($V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 100 \text{ MHz}$)		Re(y _{fs})	_	12	_	mmhos
Common–Gate Input Conductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 100 \text{ MHz})$		Re(y _{ig})	_	12	_	mmhos
Common–Source Forward Transconductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	J309 J310	9fs	10000 8000	- -	20000 18000	μmhos
Common–Source Output Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 1.0 kHz)		gos	_	-	250	μmhos
Common–Gate Forward Transconductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	J309 J310	9fg	_ _	13000 12000	_ _	μmhos
Common–Gate Output Conductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	J309 J310	gog	_ _	100 150	_ _	μmhos
Gate-Drain Capacitance $(V_{DS} = 0, V_{GS} = -10 \text{ Vdc}, f = 1.0 \text{ MHz})$		C _{gd}	_	1.8	2.5	pF
Gate-Source Capacitance $(V_{DS} = 0, V_{GS} = -10 \text{ Vdc}, f = 1.0 \text{ MHz})$		C _{gs}	_	4.3	5.0	pF
FUNCTIONAL CHARACTERISTICS	1		•	•	•	•
Equivalent Short–Circuit Input Noise Voltage (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 Hz)		e n	_	10	_	nV/√ Hz

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 3.0%.

ORDERING INFORMATION

Device	Package	Shipping [†]	
J309	TO-92		
J309G	TO-92 (Pb-Free)	1000 Units / Bulk	
J310	TO-92	1000 Units / Bulk	
J310G	TO-92 (Pb-Free)		
J310RLRP	TO-92		
J310RLRPG	TO-92 (Pb-Free)	2000 Units / Tape & Ammo Box	
J310ZL1	TO-92		
J310ZL1G	TO-92 (Pb-Free)	2000 Units / Tape & Ammo Box	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

35 30 V_{DS} = 10 V T_A = -55°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C

Figure 1. Drain Current and Transfer Characteristics versus Gate-Source Voltage

Figure 2. Forward Transconductance versus Gate-Source Voltage

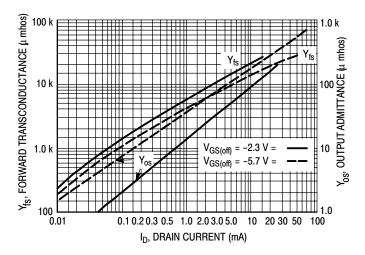


Figure 3. Common–Source Output
Admittance and Forward Transconductance
versus Drain Current

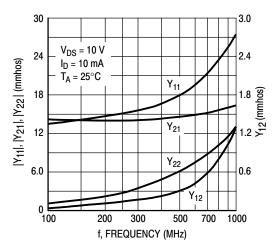


Figure 5. Common–Gate Y Parameter Magnitude versus Frequency

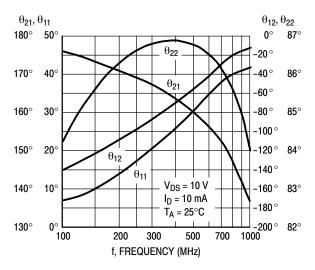


Figure 7. Common–Gate Y Parameter Phase–Angle versus Frequency

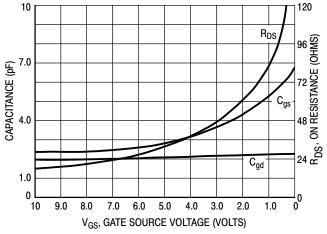


Figure 4. On Resistance and Junction Capacitance versus Gate-Source Voltage

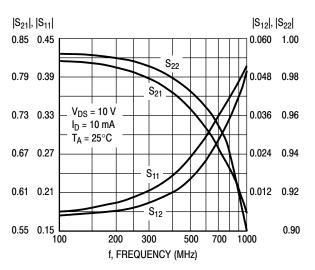


Figure 6. Common-Gate S Parameter Magnitude versus Frequency

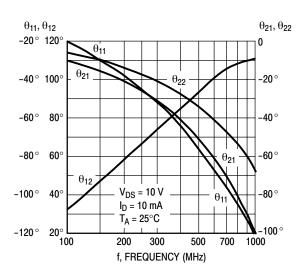
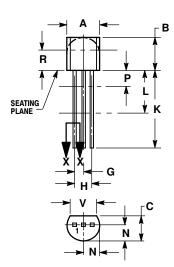
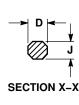




Figure 8. S Parameter Phase–Angle versus Frequency

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AL

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 V14 5M 1982
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35	-	
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
٧	0.135		3.43		

STYLE 5: PIN 1.

PIN 1. DRAIN

2. SOURCE

3. GATE

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082–1312 USA
Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada
Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.