

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NPN Power Silicon Transistor

Qualified per MIL-PRF-19500/315

Qualified Levels: JAN, JANTX, and **JANTXV**

DESCRIPTION

This NPN silicon transistor is rated at 5 amps and is military qualified up to a JANTXV level. This TO-59 isolated package features a 180 degree lead orientation.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N2880
- Low saturation voltage
- Low leakage current
- Fast switching capable 0.5 µs rise time
- High frequency response
- TO-59 case with isolated terminals
- JAN, JANTX, and JANTXV, qualifications are available per MIL-PRF-19500/315
- RoHS compliant versions available (commercial grade only)

APPLICATIONS / BENEFITS

- Class 3B to ESD per MIL-STD-750 Method 1020
- High frequency inverters
- Converters
- Linear amplifiers
- High speed switching regulated power supplies
- RF power supplies

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit	
Junction and Storage Temperature		T_J and T_{STG}	-65 to +200	°C
Thermal Resistance Junction-to-	Rejc	3.33	°C/W	
Collector Current	I _C	5.0	Α	
Collector-Emitter Voltage	V _{CEO} 80		V	
Collector-Base Voltage	V _{CBO}	110	V	
Emitter-Base Voltage		V_{EBO}	8.0	V
Total Power Dissipation	@ $T_A = +25^{\circ}C^{(1)}$	P _T	2.0	W
	@ $T_C = +100^{\circ}C^{(2)}$		30	

Notes:

- 1. Derate linearly 11.4 mW/ $^{\circ}$ C for T_A > +25 $^{\circ}$ C.
- 2. Derate linearly 300 mW/ $^{\circ}$ C for T_C > +100 $^{\circ}$ C.

Marking may vary.

TO-59 Package

MSC - Lawrence

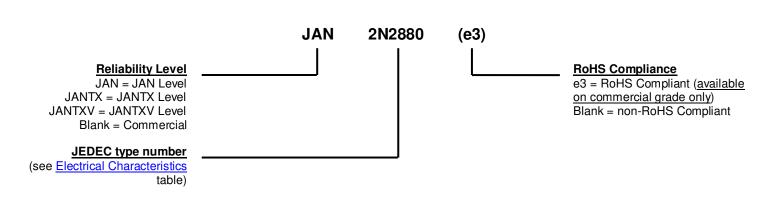
6 Lake Street. Lawrence, MA 01841 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

sales.support@microsemi.com


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Nickel Plated
- TERMINALS: Solder Dip over Nickel Plating. RoHS compliant Matte/Tin available on commercial grade only.
- MARKING: Manufacturer's ID, Date Code, Part Number, BeO
- POLARITY: See Package Outline Drawing on last page
- WEIGHT: Approximately 4.576 grams See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS				
Symbol	Definition			
I _B	Base current: The value of the dc current into the base terminal.			
I _C	Collector current: The value of the dc current into the collector terminal.			
Ι _Ε	Emitter current: The value of the dc current into the emitter terminal.			
P_T	Total power dissipation: The sum of the forward and reverse power dissipations.			
V_{BE}	Base-emitter voltage: The dc voltage between the base and the emitter.			
V _{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.			
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.			
V_{CB}	Collector-base voltage: The dc voltage between the collector and the base.			
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.			
V_{EB}	Emitter-base voltage: The dc voltage between the emitter and the base			
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.			

ELECTRICAL CHARACTERISTICS @ T_C = 25 °C unless otherwise noted

ELECTRICAL CHARACTERIOTICS & To				
Characteristic	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage	V	90		V
$I_C = 100 \text{ mA}$	$V_{(BR)CEO}$	80		V
Collector-Emitter Breakdown Voltage	V	110		V
$I_C = 10 \mu A$	$V_{(BR)CBO}$	110		V
Emitter-Base Breakdown to Voltage	V	8.0		V
$I_E = 10 \mu A$	$V_{(BR)EBO}$	0.0		V
Collector-Emitter Cutoff Current	1		20	
$V_{CE} = 60 \text{ V}$	I _{CEO}		20	μА
Collector-Base Cutoff Current	1		0.0	Δ.
$V_{CB} = 80 \text{ V}$	I _{CBO}		0.2	μА
Collector-Emitter Cutoff Current	1		1.0	
$V_{CE} = 110 \text{ V}, V_{BE} = -0.5$	I _{CEX}		1.0	μA
Emitter-Base Cutoff Current	1		0.2	
$V_{EB} = 6.0 \text{ V}$	I _{EBO}		0.2	μA
N CHARACTERISTICS				
Forward-Current Transfer Ratio	h _{FE}	40	120	
$I_C = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_C = 1.0 \text{ A}, V_{CE} = 2.0 \text{ V}$	''FE	40	120	
$I_C = 5.0 \text{ A}, V_{CE} = 5.0 \text{ V}$		15		
Base-Emitter Voltage Non-saturated				
$V_{CE} = 2.0 \text{ V}, I_{C} = 1.0 \text{ A}$	V_{BE}		1.2	V
Collector-Emitter Saturation Voltage				
$I_C = 1.0 \text{ A}, I_B = 0.1 \text{ A}$	V _{CE(sat)}		0.25	V
$I_C = 5.0 \text{ A}, I_B = 0.5 \text{ A}$	♥ GE(sat)	1.5		_
Base-Emitter Saturation Voltage $I_C = 1.0 \text{ A}, I_B = 0.1 \text{ A}$	V _{BE(sat)}		1.2	V
IC = 1.071, IB = 0.171	▼ BE(Sat)			
YNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}	3.0	12	
$I_C = 1.0 \text{ A}, V_{CE} = 10.0 \text{ V}, f = 10 \text{ MHz}$				
Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}	40	140	
$I_C = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 1 \text{ kHz}$				
Output Capacitance	C_obo		450	pF
$V_{CB} = 10 \text{ V}, I_E = 0, 100 \le f \le 1.0 \text{ MHz}$	3000		150	φ.
WITCHING CHARACTERISTICS				
Pulse delay time	t _d		60	ns
Pulse rise time	t _r		300	ns
Pulse storage time	t _s		1.7	μS
Pulse fall time	t _f		300	ns
ı uise ialı (IIIIe	·†		500	110

ELECTRICAL CHARACTERISTICS @ T_C = 25°C unless otherwise noted. (continued)

SAFE OPERATING AREA (See Figure below and MIL-STD-750, Test Method 3053)

```
DC Tests
  T_C = +100^{0}C, t = 10 seconds
Test 1
  V_{CE} = 80 \text{ V}, I_{C} = 80 \text{ mA}
Test 2
  V_{CE} = 20 \text{ V}, I_{C} = 1.5 \text{ A}
```

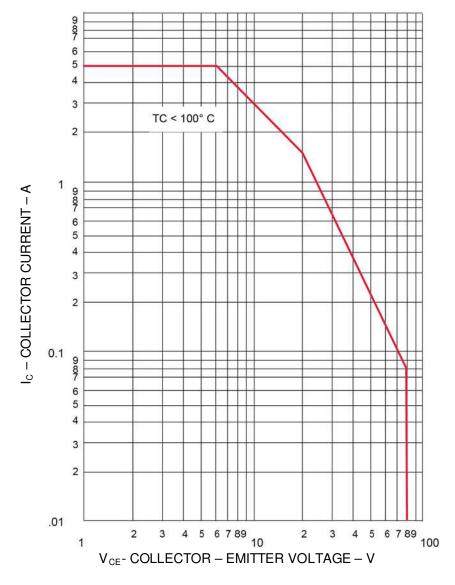


FIGURE 1 Maximum Safe Operating Area

GRAPHS

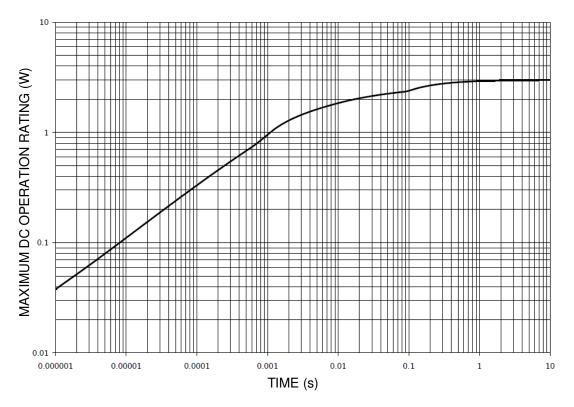
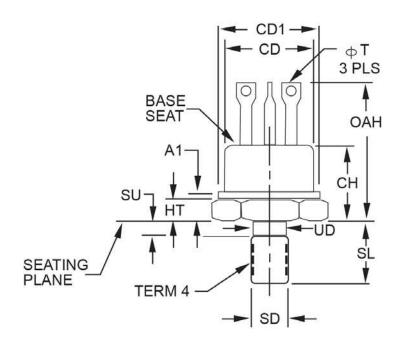
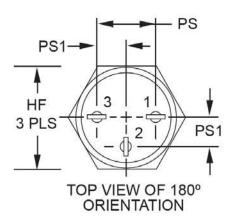




FIGURE 2 Thermal Impedance

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- Millimeters are given for information only.
- Collector shall be electrically connected to the case. This terminal may be flattened and pierced only when the 90 degree option is used.
- SD is the outer diameter of coated threads. (Reference: Screw thread standards for Federal Standard H28/1, (FED-STD-H28/1).
- 5. The orientation of the terminals in relation to the hex flats is not controlled.
- 6. All three terminals.
- The case temperature may be measured anywhere on the seating plane 7. within .125 (3.18 mm) of the stud.
- Terminal spacing measured at the base seat only.
- Dimensions e, e1, PS1, and PS are measured from the center line of terminals.
- 10. Maximum unthreaded dimension.
- 11. This dimension applies to the location of the center line of the terminals.
- 12. A 90 degee angle lead orientation as shown may be used at the option of the manufacturer. All dimensions of the basic outline except e, e1, and the 120 degree lead angle apply to this option.

	Dimension				
Symbol	In	Inch Millimeters		Notes	
	Min	Max	Min	Max	
A 1	0.090	0.150	2.29	3.81	
CD	0.320	0.468	8.13	11.89	
CD1	0.380	0.437	9.65	11.10	
CH	0.320	0.468	8.13	11.89	
HF	0.423	0.438	10.74	11.13	
HT	-	0.250	-	6.35	
OAH	0.570	0.763	14.48	19.38	4
PS	0.185	0.215	4.70	5.46	5, 8, 9
PS1	0.090	0.110	2.29	2.79	5, 8, 9
SD	0.190-32UNF-2A		4		
SL	0.400	0.455	10.16	11.56	
SU	-	0.078	-	1.98	10
φТ	0.040	0.065	1.02	1.65	
UD	0.155	0.189	3.94	4.80	

sales.support@microsemi.com