

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PNP SILICON SM ALL SIGNAL TRANSISTOR

Qualified per MIL-PRF-19500/392

Devices Qualified Level

2N3485A 2N3486A

JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	2N3485A 2N3486A	Unit
Collector-Emitter Voltage	V _{CEO}	60	Vdc
Collector-Base Voltage	V_{CBO}	60	Vdc
Emitter-Base Voltage	V_{EBO}	5.0	Vdc
Collector Current Continuous	I_{C}	600	mAdc
Total Power Dissipation @ $T_A = +25^0C^{(1)}$ @ $T_C = +25^0C^{(2)}$	D	0.4	W
	P_{T}	2.0	W
Operating & Storage Junction Temperature Range	T _{J.} T _{stg}	-55 to +200	^{0}C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance Junction-to-Ambient	$R_{ heta JA}$	0.439	⁰ mC/W
Junction-to-Case	$R_{ heta JC}$	87	⁰ C/W

- 1) Derate linearly 2.28 mW/ $^{\circ}$ C above $T_A = +25^{\circ}$ C
- 2) Derate linearly 11.43 mW/ $^{\circ}$ C above $T_{C} = +25^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS (T_A = 25⁰C unless otherwise noted)

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage	V	60		Vdc
$I_C = 10 \text{ mAdc}$	$V_{(BR)CEO}$	00		vac
Collector-Base Cutoff Current				
$V_{CB} = 50 \text{ Vdc}$	I_{CBO}		10	ηAdc
$V_{CB} = 60 \text{ Vdc}$			10	μAdc
Emitter-Base Cutoff Current				
$V_{EB} = 3.5 \text{ Vdc}$	I_{EBO}		50	ηAdc
$V_{EB} = 5.0 \text{ Vdc}$			10	μAdc

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

2N3485A, 2N3486A JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)					
Forward-Current Transfer Ratio					
$I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	2N3485A		40		
	2N3486A		75		
$I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	2N3485A		40		
	2N3486A		100		
$I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	2N3485A	h_{FE}	40		
	2N3486A		100	120	
$I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	2N3485A		40 100	300	
	2N3486A		40	300	
$I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	2N3485A		50		
	2N3486A		30		
Collector-Emitter Saturation Voltage					
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$		V _{CE(sat)}		0.4	Vdc
$I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$				1.6	
Base-Emitter Saturation Voltage					
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$		$V_{BE(sat)}$		1.3	Vdc
$I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$				2.6	
DYNAMIC CHARACTERISTICS					
Small-Signal Forward Current Transfer	Ratio				
$I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ J}$	kHz 2N3485A	^h fe	40		
	2N3486A		100		
Magnitude of Small-Signal Forward Current Transfer Ratio		h _{fe}	2.0	10	
$I_C = 50 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}$		10			
Output Capacitance		C_{obo}		8.0	pF
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$		Cobo		0.0	P1
Input Capacitance		C_{ibo}		30	pF
$V_{EB} = 2.0 \text{ Vdc}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$		Cibo			

⁽³⁾ Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.