

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

NPN POWER SILICON TRANSISTOR

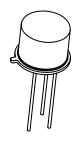
Qualified per MIL-PRF-19500/394

DEVICES

2N4150 2N5237 2N5238 2N4150S 2N5237S 2N5238S JAN
JANTX
JANTXV
JANS

ABSOLUTE MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted)

Parameters / Test Conditions	Symbol	2N4150 2N4150S	2N5237 2N5237S	2N5238 2N5238S	Unit
Collector-Emitter Voltage	V_{CEO}	70	120	170	Vdc
Collector-Base Voltage	V_{CBO}	100	150	200	Vdc
Emitter-Base Voltage	V_{EBO}	10			Vdc
Collector Current	I_{C}	10		Adc	
Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)}$ @ $T_C = +25^{\circ}C^{(2)}$	P_{T}	1.0 15		W	
Operating & Storage Junction Temperature Range	Storage Junction Temperature Range T_j , T_{stg} -65 to +200			°C	
Thermal Resistance, Junction-to Case Junction- to Ambient	$R_{\theta JC} \\ R_{\theta JA}$				°C/W


- 1) Derate linearly @ $5.7 \text{mW/}^{\circ}\text{C}$ for $T_A > +25 ^{\circ}\text{C}$
- 2) Derate linearly @ $100 \text{mW/}^{\circ}\text{C}$ for $T_C > +25 ^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				•	
Collector-Emitter Breakdown Voltage $I_C = 0.1 \text{mAdc}$	2N4150, 2N4150S 2N5237, 2N5237S 2N5238, 2N5238S	V _{(BR)CEO}	70 120 170		Vdc
Collector-Emitter Cutoff Current $V_{BE} = 0.5 \text{Vdc}, V_{CE} = 60 \text{Vdc}$ $V_{BE} = 0.5 \text{Vdc}, V_{CE} = 110 \text{Vdc}$ $V_{BE} = 0.5 \text{Vdc}, V_{CE} = 160 \text{Vdc}$	2N4150, 2N4150S 2N5237, 2N5237S 2N5238, 2N5238S	I _{CEX}		10 10 10	μAdc
$\begin{aligned} & \text{Collector-Emitter Cutoff Current} \\ & V_{\text{CE}} = 60 \text{Vdc} \\ & V_{\text{CE}} = 110 \text{Vdc} \\ & V_{\text{CE}} = 160 \text{Vdc} \end{aligned}$	2N4150, 2N4150S 2N5237, 2N5237S 2N5238, 2N5238S	I _{CEO}		10 10 10	μAdc
Emitter-Base Cutoff Current $V_{EB} = 7.0 Vdc$ $V_{EB} = 5.0 Vdc$		I_{EBO}		10 0.1	μAdc

TO-5 2N4150, 2N5237, 2N5238

TO-39 (TO-205AD) 2N4150S, 2N5237S, 2N5238S

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/394

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted) (CONT.)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector-Base Cutoff Current					
$V_{CB} = 100 Vdc$	2N4150, 2N4150S			10	
$V_{CB} = 150 \text{Vdc}$	2N5237, 2N5237S	I_{CBO}		10	μAdc
$V_{CB} = 200 Vdc$	2N5238, 2N5238S			10	
$V_{CB} = 80 \text{Vdc}$	All Types			0.1	
ON CHARACTERISTICS (3)					
Forward-Current Transfer Ratio					
$I_C = 1.0 Adc, V_{CE} = 5.0 Vdc$	2N4150, 2N4150S		50	200	
	2N5237, 2N5237S	h	50	225	
	2N5238, 2N5238S	$h_{ m FE}$	50	225	
$I_C = 5.0 Adc, V_{CE} = 5.0 Vdc$	All Types		40	120	
$I_C = 10 Adc$, $V_{CE} = 5.0 Vdc$	All Types		10	-	
Collector-Emitter Saturation Voltage					
$I_C = 5.0 \text{Adc}, I_B = 0.5 \text{Adc}$		$V_{CE(sat)}$		0.6	Vdc
$I_C = 10 Adc, I_B = 1.0 Adc$		` ′		2.5	
Base-Emitter Saturation Voltage			•		
$I_C = 5.0 Adc, I_B = 0.5 Adc$		$V_{BE(sat)}$		1.5	Vdc
$I_C = 10 Adc$, $I_B = 1.0 Adc$, í		25	

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
$\begin{aligned} & \text{Magnitude of Common Emitter Small-Signal Short-Circuit} \\ & \text{Forward Current Transfer Ratio} \\ & I_C = 0.2 \text{Adc}, V_{CE} = 10 \text{Vdc}, f = 10 \text{MHz} \end{aligned}$		$ h_{ m fe} $	1.5	7.5	
Forward Current Transfer Ratio $I_C = 50 \text{mAdc}, V_{CE} = 5.0 \text{V}, f = 1.0 \text{kHz}$	2N4150, 2N4150S 2N5237, 2N5237S 2N5238, 2N5238S	h_{fe}	40 40 40	160 160 250	
Output Capacitance $V_{CB} = 10 Vdc$, $I_E = 0$, $100 kHz \le f \le 1.0 MHz$		C _{obo}		350	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Delay Time	$V_{CC} = 20 \text{Vdc}, V_{BB} = 5.0 \text{Vdc}$	$t_{\rm d}$		50	ns
Rise Time	$I_C = 5.0 \text{Adc}, I_{B1} = 0.5 \text{Adc}$	$t_{\rm r}$		500	ns
Storage Time	$V_{CC} = 20 \text{Vdc}, V_{BB} = 5.0 \text{Vdc}$	$t_{\rm s}$		1.5	μs
Fall Time	$I_C = 5.0 \text{Adc}, I_{B1} = -I_{B2} = -0.5 \text{Adc}$	t_{f}		500	ns

SAFE OPERATING AREA

DC Tests

 $T_C = +25$ °C, 1 Cycle, t = 1.0s

Test 1

 $V_{CE} = 40 Vdc, I_{C} = 0.22 Adc$

Test 2

 $V_{CE} = 70 \text{Vdc}, I_C = 90 \text{mAdc}$

Test 3

 $V_{CE} = 120 V dc, I_{C} = 15 mAdc$ 2N5237, 2N52378 $V_{CE} = 170 V dc, I_{C} = 3.5 mAdc$ 2N5238, 2N52388

(3) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$