

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

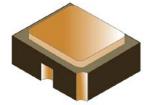
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

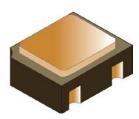
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


PNP Small Signal Silicon Transistor

Qualified per MIL-PRF-19500/511

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION


This 2N4261UB small signal transistor features ceramic bodied construction with a metal lid for military grade products per MIL-PRF-19500/511. It is also available with a ceramic lid in the UBC package or in a hermetically sealed metal TO-72 package.

 $\label{lem:mortant:portant:} \textbf{Important:} \ \ \textbf{For the latest information, visit our website} \ \ \underline{\textbf{http://www.microsemi.com}}.$

FEATURES

- Surface mount equivalent of popular JEDEC registered 2N4261 number
- JAN, JANTX, JANTXV and JANS qualification is available per MIL-PRF-19500/511 (See <u>part nomenclature</u> for all available options.)
- RoHS compliant

UB Package

Also available in:

UBC package

(Ceramic Lid surface mount)
2N4261UBC

TO-72 package

(leaded) 2N4261

APPLICATIONS / BENEFITS

- Low-profile ceramic bodied surface mount package (see package illustration)
- Lightweight
- Military and other high-reliability applications

MAXIMUM RATINGS @ T_A = 25 °C

Parameters/Test Conditions	Symbol	Value	Unit				
Junction and Storage Temperatur	е	T _J & T _{STG}	^c T _{STG} -65 to +200 °C				
Thermal Resistance Junction-to-A	mbient ⁽¹⁾	R _{OJA}	0.860	°C/W			
Collector – Emitter Voltage		V _{CEO}	-15	V			
Collector – Base Voltage		V _{CBO}	-15	V			
Emitter - Base Voltage		V _{EBO}	-4.5	V			
Total Power Dissipation (1)	@ $T_A = +25 {}^{\circ}C^{(1)}$ @ $T_C = +25 {}^{\circ}C^{(2)}$	P _T	0.2	W			
Collector Current		Ic	-30	mA			

NOTES: 1. Derate linearly 1.14 mW/ $^{\circ}$ C above T_A = +25 $^{\circ}$ C

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic
- TERMINALS: Gold plating over nickel under plate
- MARKING: Part number, date code, manufacturer's ID
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: Less than 0.04 grams
- See Package Dimensions on last page.

JAN 2N4261 UB Reliability Level JAN = JAN level JANTX = JANTX level JANTXV = JANTXV level JANS = JANS level Blank = Commercial grade JAN = JAN

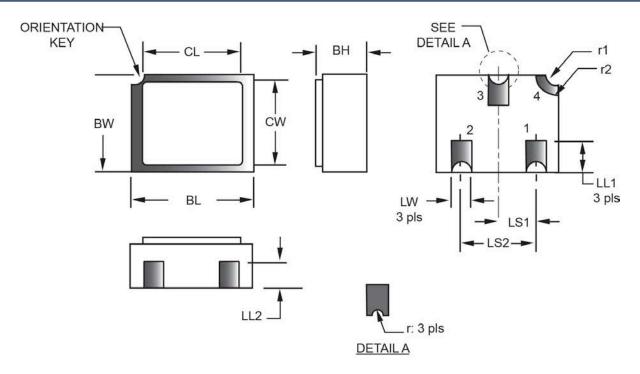
	SYMBOLS & DEFINITIONS							
Symbol	Definition							
I _B	Base current: The value of the dc current into the base terminal.							
Ic	Collector current: The value of the dc current into the collector terminal.							
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.							
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.							
V _{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.							
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.							
V _{CC}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.							
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.							
V _{EB}	Emitter-base voltage: The dc voltage between the emitter and the base							

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise noted

Parameters / Test Conditions	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage I _C = -10 mA	V _{(BR)CEO}	-15		V
Collector-Base Cutoff Current V _{CB} = -15 V	I _{CBO}		-10	μА
Emitter-Base Cutoff Current V _{EB} = -4.5 V	I _{EBO}		-10	μΑ
Collector-Emitter Cutoff Current $V_{CE} = -10 \text{ V}, V_{BE} = -0.4 \text{ V}$ $V_{CE} = -10 \text{ V}, V_{BE} = -2.0 \text{ V}$	I _{CEX}		-50 -5	nA nA
ON CHARACTERISTICS (1)				
Forward-Current Transfer Ratio $I_C = -1.0 \text{ mA}, V_{CE} = -1.0 \text{ V}$ $I_C = -10 \text{ mA}, V_{CE} = -1.0 \text{ V}$ $I_C = -30 \text{ mA}, V_{CE} = -1.0 \text{ V}$	h _{FE}	25 30 20	150	
Collector-Emitter Saturation Voltage $I_C = -1.0 \text{ mA}, I_B = -0.1 \text{ mA}$ $I_C = -10 \text{ mA}, I_B = -1.0 \text{ mA}$	V _{CE(sat)}		-0.15 -0.35	V
Base-Emitter Saturation Voltage (Non-Saturated) $V_{CE} = -1.0 \text{ V}, I_{C} = -1.0 \text{ mA}$ $V_{CE} = -1.0 \text{ V}, I_{C} = -10 \text{ mA}$	V _{BE}		-0.8 -1.0	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min	Max	Unit
Magnitude of Small-Signal Forward Current Transfer				
Ratio	h _{fe}			
$I_C = -5.0 \text{ mA}, V_{CE} = 4.0 \text{ V}, f = 100 \text{ MHz}$	fe	15		
$I_C = -10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 100 \text{ MHz}$		20		
Output Capacitance	0		2.5	ъE
$V_{CB} = -4 \text{ V}, I_{E} = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C_{obo}		2.5	pF
Input Capacitance	C _{ibo}		2.5	pF
$V_{EB} = -0.5V, I_{C} = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	Oibo		2.5	ρ


SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min	Max	Unit
Turn-On Time $V_{CC} = -17 \text{ V}; I_C = -10 \text{ mA}$	t _{on}		2.5	ns
Turn-Off Time $V_{CC} = -17 \text{ V}; I_C = -10 \text{ mA}$	t _{off}		3.5	ns

(1) Pulse Test: pulse width = 300 μs , duty cycle $\leq 2.0\%$

PACKAGE DIMENSIONS

Symbol	Dimensions						Dimensions				
	inch n		millin	millimeters		Symbol	inch		millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
вн	0.046	.056	1.17	1.42		LS1	0.035	0.039	0.89	0.99	
BL	0.115	0.128	2.92	3.25		LS2	0.071	0.079	1.80	2.01	
BW	0.085	0.108	2.16	2.74		LW	0.016	0.024	0.41	0.61	
CL	-	0.128	-	3.25		r	-	0.008	-	0.20	
CW	-	0.108	-	2.74		r1	-	0.012	-	0.31	
LL1	0.022	0.038	0.56	0.97		r2	-	0.022	-	.056	
LL2	0.017	0.035	0.43	0.89							

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- Ceramic package only.
 Hatched areas on package denote metallized areas.
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.