

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA

NPN POWER TRANSISTOR SILICON AMPLIFIER

Qualified per MIL-PRF-19500/583

Devices Qualified Level

2N5681 2N5682

JAN JANTX JANTXV

MAXIMUM RATINGS (T_{A =} 25°C unless otherwise noted)

Ratings	Symbol	2N5681	2N5682	Units
Collector-Emitter Voltage	V_{CEO}	100	120	Vdc
Collector-Base Voltage	V_{CBO}	100	120	Vdc
Emitter-Base Voltage	V_{EBO}	4.0	4.0	Vdc
Collector Current	I_{C}	1.0	1.0	Adc
Base Current	I_{B}	0.5	0.5	Adc
Total Power Dissipation @ $T_A = +25^0 C^{(1)}$	D	1.0	1.0	W
@ $T_C = +25^0C^{(2)}$	P_{T}	10	10	W
Operating & Storage Temperature Range	Top, Tstg	-65 to +200	-65 to +200	°C

THERMAL CHARACTERISTICS

THERMAL CHARACTERISTICS			
Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	17.5	°C

- 1) Derate linearly 5.7 mW/ $^{\circ}$ C for T_A > +25 $^{\circ}$ C
- 2) Derate linearly 57 mW/ $^{\circ}$ C for T_C > +25 $^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS (T_A = 25⁰C unless otherwise noted)

Charact	eristics	Symbol	Min.	Max.	Unit
OFF CHARACTERIST	ΓICS				
Collector-Emitter Breakdor $I_C = 10 \text{ mAdc}$	own Voltage 2N5681 2N5682	V(BR)CEO	100 120		Vdc
Emitter-Base Cutoff Curr $V_{EB} = 4.0 \text{ Vdc}$		I_{EBO}		1.0	μAdc
$\begin{aligned} & \text{Collector-Emitter Cutoff of } \\ & V_{\text{CE}} = 70 \text{ Vdc} \\ & V_{\text{CE}} = 80 \text{ Vdc} \end{aligned}$	Current 2N5681 2N5682	I_{CEO}		10	μAdc
$\begin{aligned} & \text{Collector-Emitter Cutoff of } \\ & V_{BE} = 1.5 \text{ Vdc} \\ & V_{CE} = 100 \text{ Vdc} \\ & V_{CE} = 120 \text{ Vdc} \end{aligned}$	2N5681 2N5682	I_{CEX}		100	nAdc
Collector-Baser Cutoff Cu $V_{CE} = 100 \text{ Vdc}$ $V_{CE} = 120 \text{ Vdc}$	2N5681 2N5682	I_{CBO}		100	nAdc

6 Lake Street, Lawrence, MA 01841

120101

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

Page 1 of 2

2N5681, 2N5682 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)				
Forward Current Transfer Ratio				
$I_C = 250 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc}$	1.	40	150	
$I_C = 500 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc}$	$h_{ m FE}$	20		
$I_C = 1.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$		5		
Collector-Emitter Saturation Voltage				
$I_C = 250 \text{ mAdc}, I_B = 25 \text{ mAdc}$	V _{CE(sat)}		0.6	Vdc
$I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$			1.0	
Base-Emitter Saturation Voltage				
$I_C = 250 \text{ mAdc}, I_B = 25 \text{ mAdc}$	V _{BE(sat)}		1.1	Vdc
$I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$			1.3	
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal				
Short Circuit Forward-Current Transfer Ratio	$ h_{fe} $	3.0		
$I_C = 0.1 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 10 \text{ kHz}$	II _{fe}			
Small Signal Short Circuit Forward-Current				
Transfer Ratio	h_{fe}	40		
$I_C = 0.2 \text{ Adc}, V_{CE} = 1.5 \text{ Vdc}, f = 1.0 \text{ kHz}$				
Output Capacitance	C_{obo}		50	pF
$V_{CB} = 20 \text{ Vdc}, I_{E} = 0, f = 1 \text{ MHz}$	Cobo		30	P

SAFE OPERATING AREA

DC Tests

 $T_C = +25^{\circ}C$, 1 Cycle, $t \ge 0.5 \text{ s}$

Test 1

 $V_{CE} = 2 \text{ Vdc}, I_C = 1.0 \text{ Adc}$

Test 2

 $V_{CE} = 10 \text{ Vdc}, I_C = 1.0 \text{ Adc}$

Test 3

 $V_{CE} = 90 \text{ Vdc}, I_C = 50 \text{ mAdc}$