

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

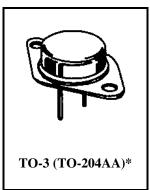
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/498

Devices Qualified Level


2N6306 2N6308

JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	2N6306	2N6308	Units
Collector-Emitter Voltage	V_{CEO}	250	350	Vdc
Collector-Base Voltage	V_{CBO}	500	700	Vdc
Emitter-Base Voltage	V_{EBO}	8.0		Vdc
Collector Current	I_{C}	8.0		Adc
Base Current	I_{B}	4.0		Adc
Total Power Dissipation @ $T_C = +25^{\circ}C^{(1)}$	D	12	25	W
$\text{@ T}_{\text{C}} = +100^{0} \text{C}^{(1)}$	P_{T}	62	2.5	W
Operating & Storage Temperature Range	Top, Tstg	-65 to	+200	°C

¹⁾ Between $T_C = +25^{\circ}C$ and $T_C = +175^{\circ}C$, linear derating factor average = 0.833 W/°C

*See Appendix A for Package Outline

ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTI	CS				
Characteristics		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage					
$I_C = 100 \text{ mAdc}$	2N6306	$V_{(BR)CEO}$	250		Vdc
	2N6308		350		
Collector-Emitter Cutoff Current					
$V_{CE} = 500 \text{ Vdc}; V_{BE} = 1.5 \text{ Vdc}$	2N6306	I_{CEX}		5.0	μAdc
$V_{CE} = 700 \text{ Vdc}; V_{BE} = 1.5 \text{ Vdc}$	2N6308			5.0	
Collector-Emitter Cutoff Current					
$V_{CE} = 250 \text{ Vdc}$	2N6306	I_{CEO}		50	μAdc
$V_{CE} = 350 \text{ Vdc}$	2N6308			50	
Emitter-Base Cutoff Current		т			μAdc
$V_{EB} = 8 \text{ Vdc}$		I_{EBO}		5.0	

2N6306, 2N6308 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteris	tics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)					
Forward-Current Transfer Ratio					
$I_C = 3.0 \text{ Adc}; V_{CE} = 5.0 \text{ Vdc}$	2N6306		15	75	
	2N6308		12	60	
$I_{\rm C} = 8.0 \text{ Adc}; V_{\rm CE} = 5.0 \text{ Vdc}$	2N6306	h_{FE}	4		
	2N6308		3		
$I_C = 0.5 \text{ Adc}; V_{CE} = 5.0 \text{ Vdc}$	2N6306		15		
	2N6308		12		
Base-Emitter Voltage					
$V_{CE} = 5.0 \text{ Vdc}; I_{C} = 3.0 \text{ Adc}$	2N6306	$V_{BE(on)}$		1.3	Vdc
	2N6308			1.5	
Base-Emitter Saturated Voltage					
$I_B = 2.0 \text{ Adc}; I_C = 8.0 \text{ Adc}$	2N6306	V _{BE(sat)}		2.3	Vdc
$I_B = 2.67 \text{ Adc}; I_C = 8.0 \text{ Adc}$	2N6308			2.5	
Collector-Emitter Saturated Voltage					
$I_B = 2.0 \text{ Adc}; I_C = 8.0 \text{ Adc}$	2N6306			5.0	
$I_B = 2.67 \text{ Adc}; I_C = 8.0 \text{ Adc}$	2N6308	V _{CE(sat)}		5.0	Vdc
$I_B = 0.6 \text{ Adc}; I_C = 3.0 \text{ Adc}$	2N6306			0.8	
	2N6308			1.5	
DYNAMIC CHARACTERISTICS					
Magnitude of Common-Emitter Small-S	ignal Short-Circuit				
Forward Current Transfer Ratio		h _{fe}			
$I_C = 0.3 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1 \text{ MHz}$			5	30	
Small-Signal Short-Circuit Forward Current Transfer Ratio		h_{fe}			
$I_C = 0.5 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}, f = 1.0$	kHz	Tile .	5		
Output Capacitance		C_{obo}			pF
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le$		C000		250	P1
SWITCHING CHARACTERISTIC	CS				
Turn-On Time		t _{on}			He
$V_{CC} = 125 \text{ Vdc}$; $I_C = 3.0 \text{ Adc}$; $I_B = 0.6 \text{ Adc}$	Adc	OII		0.6	μs
Turn-Off Time		^t off			He
$V_{CC} = 125 \text{ Vdc}$; $I_C = 3.0 \text{ Adc}$; $I_{B1} = 0.6$	Adc; $I_{B2} = 1.5$ Adc	OH		3.0	μs
SAFE OPERATING AREA					

DC Tests

 $T_C = +25^{\circ}C$; t = 1 s, 1 cycle (See Figure 2 and 3 of MIL-PRF-19500/498)

 $V_{CE} = 15.6 \text{ Vdc}, I_C = 8 \text{ Adc}$

Test 2

 $V_{CE} = 37 \text{ Vdc}, I_C = 3.4 \text{ Adc}$

Test 3

 $V_{CE} = 200 \text{ Vdc}, I_C = 65 \text{ mAdc}$ 2N6306 $V_{CE} = 300 \text{ Vdc}, I_C = 25 \text{ mAdc}$ 2N6308

2.) Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.