

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

N-CHANNEL MOSFET

Qualified per MIL-PRF-19500/543

Qualified Levels: JAN, JANTX, and **JANTXV**

DESCRIPTION

This family of 2N6764, 2N6766, 2N6768 and 2N6770 switching transistors are military qualified up to the JANTXV level for high-reliability applications. These devices are also available in a thru hole TO-254AA leaded package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N6764, 2N6766, 2N6768 and 2N6770 number series.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/543. (See part nomenclature for all available options.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Low-profile metal can design.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ $T_A = +25$ $^{\circ}$ C unless otherwise stated

Parameters / Test Condition	Symbol	Value	Unit	
Junction & Storage Temperature Range		T _J & T _{stg}	-55 to +150	°C
Thermal Resistance Junction-to-Case		Rejc	0.83	°C/W
	A = +25 °C C = +25 °C ⁽¹⁾	Рт	4 150	W
Drain-Source Voltage, dc	2N6764 2N6766 2N6768 2N6770	V_{DS}	100 200 400 500	V
Gate-Source Voltage, dc		V_{GS}	± 20	V
Drain Current, dc @ T _C = +25 ^o C (2)	2N6764 2N6766 2N6768 2N6770	I _{D1}	38.0 30.0 14.0 12.0	A
Drain Current, dc @ T _C = +100 ^o C (2)	2N6764 2N6766 2N6768 2N6770	I _{D2}	24.0 19.0 9.0 7.75	A
Off-State Current (Peak Total Value) (3)	2N6764 2N6766 2N6768 2N6770	I _{DM}	152 120 56 48	A (pk)
Source Current	2N6764 2N6766 2N6768 2N6770	I _S	38.0 30.0 14.0 12.0	А

Notes featured on next page.

TO-204AE (TO-3) **Package**

Also available in:

TO-254AA package

(leaded)

2N6764T1 & 2N6770T1

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

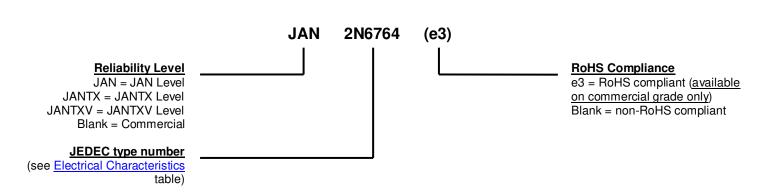
Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

NOTES:

- Derate linearly by 1.2 W/^oC for T_C > +25 ^oC.
- 2. The following formula derives the maximum theoretical I_D limit. I_D is limited by package and internal wires and may also be limited by pin diameter:


$$I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} \ x \ R_{DS(on)} \ @ \ T_J (max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MECHANICAL and PACKAGING

- CASE: TO-3 metal can.
- TERMINALS: Solder dipped (Sn63/Pb37) over nickel plated alloy 52. RoHS compliant matte-tin plating is also available on commercial grade only.
- MARKING: Manufacturer's ID, part number, date code.
- WEIGHT: Approximately 12.7 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS							
Symbol	Symbol Definition						
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.						
I _F	Forward current						
R_G	Gate drive impedance						
V_{DD}	Drain supply voltage						
V_{DS}	Drain source voltage, dc						
V_{GS}	Gate source voltage, dc						

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ mA}$	2N6764 2N6766 2N6768 2N6770	V _{(BR)DSS}	100 200 400 500		V
Gate-Source Voltage (Threshold) $\begin{split} V_{DS} &\geq V_{GS}, \ I_D = 0.25 \ mA \\ V_{DS} &\geq V_{GS}, \ I_D = 0.25 \ mA, \ T_J = +125 \ ^\circ\text{C} \\ V_{DS} &\geq V_{GS}, \ I_D = 0.25 \ mA, \ T_J = -55 \ ^\circ\text{C} \end{split}$		$V_{GS(th)1}$ $V_{GS(th)2}$ $V_{GS(th)3}$	2.0 1.0	4.0 5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_{J} = +125 \text{ °C}$ Drain Current		I _{GSS1} I _{GSS2}		±100 ±200	nA
$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$ $V_{GS} = 0 \text{ V}, V_{DS} = 160 \text{ V}$ $V_{GS} = 0 \text{ V}, V_{DS} = 320 \text{ V}$ $V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V}$	2N6764 2N6766 2N6768 2N6770	I _{DSS1}		25	μΑ
$\begin{array}{l} \text{Drain Current} \\ V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}, T_{J} = +125 \text{ °C} \\ V_{GS} = 0 \text{ V}, V_{DS} = 200 \text{ V}, T_{J} = +125 \text{ °C} \\ V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V}, T_{J} = +125 \text{ °C} \\ V_{GS} = 0 \text{ V}, V_{DS} = 500 \text{ V}, T_{J} = +125 \text{ °C} \\ \end{array}$	2N6764 2N6766 2N6768 2N6770	I _{DSS2}		1.0	mA
$\begin{array}{l} \text{Drain Current} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{V}_{\text{DS}} = 80 \text{ V}, \text{T}_{\text{J}} = +125 \text{ °C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{V}_{\text{DS}} = 160 \text{ V}, \text{T}_{\text{J}} = +125 \text{ °C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{V}_{\text{DS}} = 320 \text{ V}, \text{T}_{\text{J}} = +125 \text{ °C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{V}_{\text{DS}} = 400 \text{ V}, \text{T}_{\text{J}} = +125 \text{ °C} \\ \end{array}$	2N6764 2N6766 2N6768 2N6770	I _{DSS3}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 24.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 19.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 7.75 \text{ A pulsed}$	2N6764 2N6766 2N6768 2N6770	r _{DS(on)1}		0.055 0.085 0.3 0.4	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 38.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 30.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A pulsed}$	2N6764 2N6766 2N6768 2N6770	r _{DS(on)2}		0.065 0.09 0.4 0.5	Ω
Static Drain-Source On-State Resistance $T_J = +125 ^{\circ}\text{C}$ $V_{GS} = 10 \text{V}, I_D = 24.0 \text{A pulsed}$ $V_{GS} = 10 \text{V}, I_D = 19.0 \text{A pulsed}$ $V_{GS} = 10 \text{V}, I_D = 9.0 \text{A pulsed}$ $V_{GS} = 10 \text{V}, I_D = 7.75 \text{A pulsed}$	2N6764 2N6766 2N6768 2N6770	r _{DS(on)3}		0.094 0.153 0.66 0.88	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = 38.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 30.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 14.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 12.0 \text{ A pulsed}$	2N6764 2N6766 2N6768 2N6770	V _{SD}		1.9 1.9 1.7 1.7	V

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

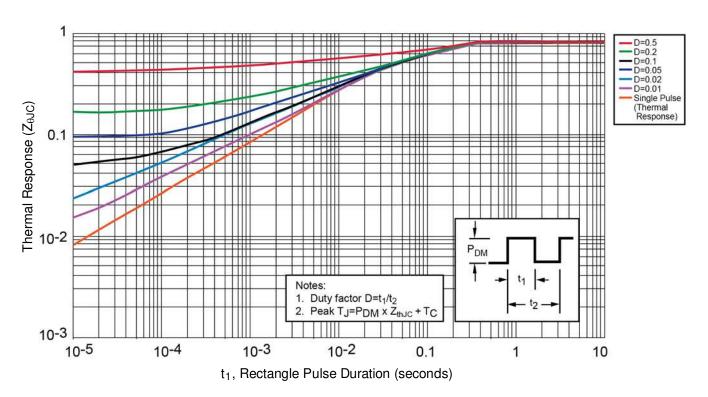
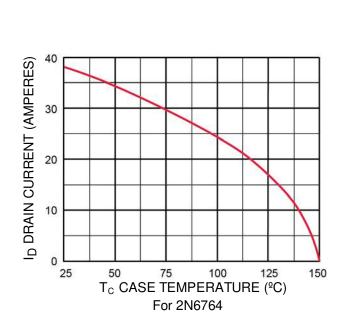
DYNAMIC CHARACTERISTICS

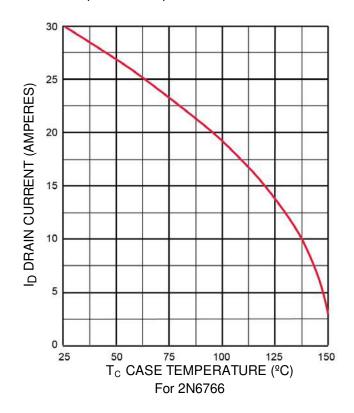
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
$ \begin{array}{c} \text{On-State Gate Charge} \\ \text{V}_{\text{GS}} = 10 \text{ V}, \text{ I}_{\text{D}} = 38.0 \text{ A}, \text{V}_{\text{DS}} = 50 \text{ V} \\ \text{V}_{\text{GS}} = 10 \text{ V}, \text{ I}_{\text{D}} = 30.0 \text{ A}, \text{V}_{\text{DS}} = 100 \text{ V} \\ \text{V}_{\text{GS}} = 10 \text{ V}, \text{ I}_{\text{D}} = 14.0 \text{ A}, \text{V}_{\text{DS}} = 200 \text{ V} \\ \text{V}_{\text{GS}} = 10 \text{ V}, \text{ I}_{\text{D}} = 12.0 \text{ A}, \text{V}_{\text{DS}} = 250 \text{ V} \\ \end{array} $	2N6764 2N6766 2N6768 2N6770	$Q_{g(on)}$		125 115 110 120	nC
Gate to Source Charge $V_{GS} = 10 \text{ V}, \ I_D = 38.0 \text{ A}, \ V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, \ I_D = 30.0 \text{ A}, \ V_{DS} = 100 \text{ V}$ $V_{GS} = 10 \text{ V}, \ I_D = 14.0 \text{ A}, \ V_{DS} = 200 \text{ V}$ $V_{GS} = 10 \text{ V}, \ I_D = 12.0 \text{ A}, \ V_{DS} = 250 \text{ V}$	2N6764 2N6766 2N6768 2N6770	Q_gs		22 22 18 19	nC
Gate to Drain Charge $V_{GS} = 10 \text{ V}, I_D = 38.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 30.0 \text{ A}, V_{DS} = 100 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A}, V_{DS} = 200 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A}, V_{DS} = 250 \text{ V}$	2N6764 2N6766 2N6768 2N6770	Q_gd		65 60 65 70	nC

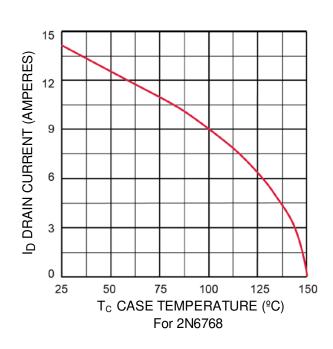
SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-on delay time					
$I_D = 38.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N6764				
$I_D = 30.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N6766	t., ,		35	ns
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N6768	t _{d(on)}		00	113
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N6770				
Rise time					
$I_D = 38.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N6764				
$I_D = 30.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N6766	t _r		190	ns
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N6768	ιγ		100	110
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N6770				
Turn-off delay time					
$I_D = 38.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N6764				
$I_D = 30.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N6766	$t_{d(off)}$		170	ns
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N6768	•а(оп)		170	110
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N6770				
Fall time					
$I_D = 38.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N6764				
$I_D = 30.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N6766	t _f		130	ns
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N6768	L ₁		100	110
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N6770				
Diode Reverse Recovery Time					
$di/dt = 100 \text{ A/}\mu\text{s}, V_{DD} \le 30 \text{ V}, I_D = 38.0 \text{ A}$	2N6764			500	
$di/dt = 100 \text{ A/µs}, V_{DD} \le 30 \text{ V}, I_D = 30.0 \text{ A}$	2N6766	t t		950	ns
$di/dt = 100 \text{ A/}\mu\text{s}, V_{DD} \le 30 \text{ V}, I_D = 14.0 \text{ A}$	2N6768	t _{rr}		1200	110
$di/dt = 100 \text{ A/}\mu\text{s}, V_{DD} \le 30 \text{ V}, I_D = 12.0 \text{ A}$	2N6770			1600	

GRAPHS


FIGURE 1
Thermal Response Curves



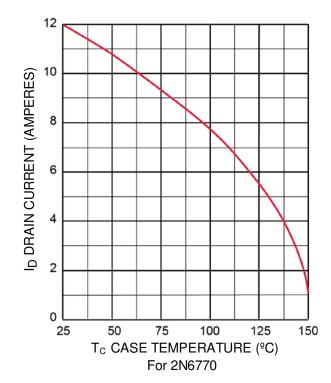
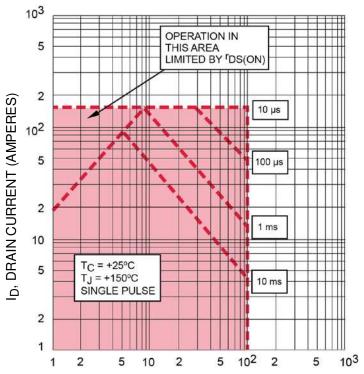
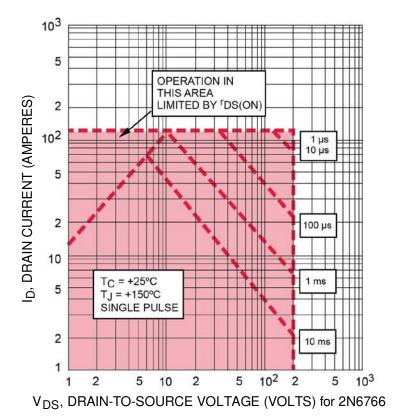

GRAPHS (continued)

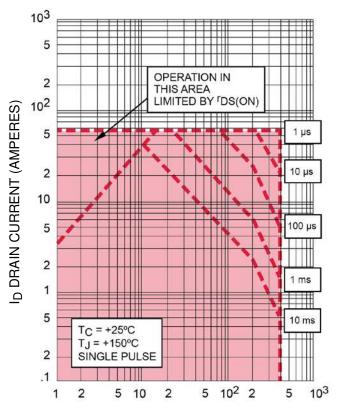
FIGURE 2 - Maximum Drain Current vs Case Temperature Graphs



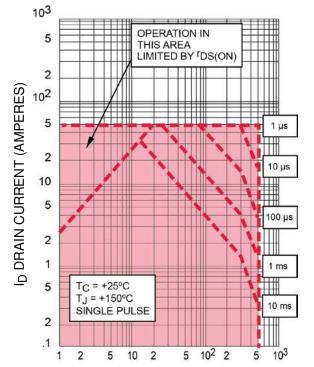


GRAPHS (continued)

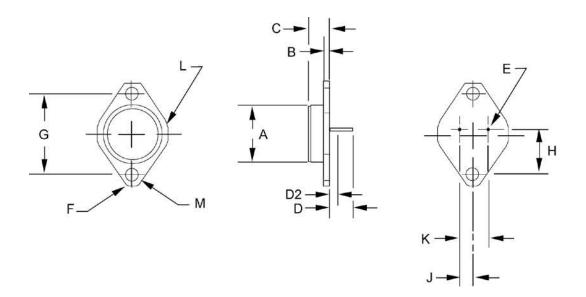
FIGURE 3 - Maximum Safe Operating Area



V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) for 2N6764

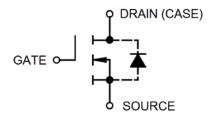


GRAPHS (continued)


V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) for 2N6768

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) for 2N6770

PACKAGE DIMENSIONS



NOTE:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. These dimensions should be measured at points .050 inch (1.27 mm) and .055 inch (1.40 mm) below the seating plane. When gauge is not used measurement will be made at the seating plane.
- 4. The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- 5. These dimensions pertain to the 2N6764 and 2N6766 types.
- 6. These dimensions pertain to the 2N6768 and 2N6770 types.
- 7. Mounting holes shall be deburred on the seating plane side.
- 8. Drain is electrically connected to the case.
- 9. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

DIM	INCHES MILLIMET		NOTES		
DIIVI	MIN	MAX	MIN	MAX	NOTES
Α	-	0.875	-	22.23	
В	0.060	0.135	1.52	3.43	
O	0.250	0.360	6.35	9.15	
D	0.312	0.500	7.92	12.70	
D2	-	0.050	-	1.27	(3)
Е	0.057	0.063	1.45	1.60	DIA. (5)
_	0.038	0.043	0.97	1.10	DIA. (6)
F	0.131	0.188	3.33	4.78	Radius
G	1.177	1.197	29.90	30.40	
Н	0.655	0.675	16.64	17.15	
Ĺ	0.205	0.225	5.21	5.72	
K	0.420	0.440	10.67	11.18	
٦	0.495	0.525	12.57	13.3	Radius
М	0.151	0.161	3.84	4.09	DIA. (7)

SCHEMATIC

