imall

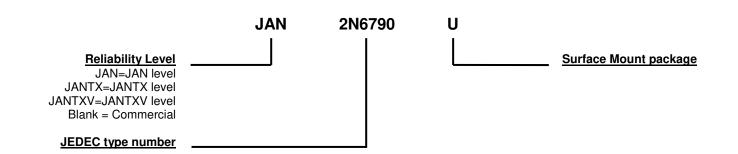
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Zompliant Q	<u>Qualified Levels</u> : JAN, JANTX, and JANTXV				
	DESCRIPTION				
These 2N6788U and 2N6790U dev reliability applications. Microsemi al lower power voltage regulation app					
Important: For the latest information, visit o	ur website <u>http://www.micro</u> FEATURES	<u>semi.com</u> .			
 Surface mount equivalent of JEDE JAN, JANTX, and JANTXV qualific RoHS compliant by design. 	•				U-18 LCC
					Package
AP	PLICATIONS / BENE	FITS			Гаскаус
 High frequency operation. Lightweight, low-profile package. ESD rated to class 1A. 	GS @ T _C = +25 °C un	loop other	vice poted		Also available in: TO-205AF Package (leaded) 2N6788 & 2N6790
Parameters / Test Conditions		Symbol	Value	Unit	
Junction & Storage Temperature		T _J , T _{stg}	-55 to +150	°C	
Thermal Resistance Junction-to-Case	(see <u>Figure 1</u>)	R _{eJC}	8.93	°C/W	
Total Power Dissipation ⁽¹⁾		Ρ _T	0.8	W	
Drain to Gate Voltage	2N6788U 2N6790U	V_{DG}	100 200	V	
Drain – Source Voltage	2N6788U 2N6790U	V _{DS}	100 200	V	
Gate – Source Voltage		V_{GS}	± 20	V	
Drain Current, dc @ T_c = +25 °C ⁽²⁾ (see Figure ?)	2N6788U 2N6790U	I _{D1}	4.5 2.8	А	MSC – Lawrence
Drain Current, dc @ T _C = +100 °C	2N6788U 2N6790U	I _{D2}	2.8 1.8	А	6 Lake Street, Lawrence, MA 01841
Off-State Current ⁽³⁾	2N6788U 2N6790U	I _{DM}	18 11	A (pk)	Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803
Source Current	2N6788U 2N6790U	Is	4.5 2.8	А	<u>MSC – Ireland</u> Gort Road Business Park,
 Notes: 1. Derated linearly by 0.11 W/°C for 2. The following formula derives th wires and may be limited due to 3. I_{DM} = 4 x I_{D1}; I_{D1} as calculated in 	e maximum theoretical I _D lir p pin diameter. $I_D = \sqrt{\frac{1}{R_{\Theta JC}}}$	nit. I _D is also TJ (max) - Tc x RDs(on) @ ∃		e and internal	Website: www.microsemi.com
					l

MECHANICAL and PACKAGING

- CASE: Ceramic LCC-18 with kovar gold plated lid.
- TERMINALS: Gold plating over nickel.
- MARKING: Manufacturer's ID, part number, date code, ESD symbol at pin 1 location.
- TAPE & REEL option: Standard per EIA-481-D. Consult factory for quantities.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS					
Symbol	Definition				
ID	Drain current.				
I _F	Forward current.				
Tc	Case temperature.				
V _{DD}	Drain supply voltage.				
V _{DS}	Drain to source voltage.				
V _{GS}	Gate to source voltage.				

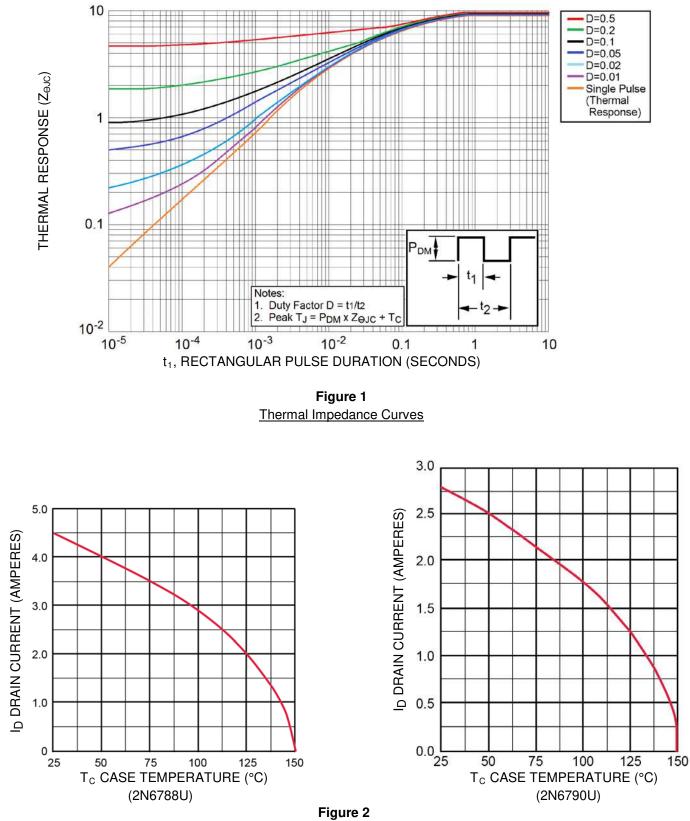
ELECTRICAL CHARACTERISTICS @	$T_A = +25 \text{ °C}$, unless otherwise noted
------------------------------	---

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERTICS					
Drain-Source Breakdown Voltage $V_{GS} = 0 V, I_D = 1 mA$	2N6788U 2N6790U	$V_{(BR)DSS}$	100 200		V
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}$, $I_D = 0.25 \text{ mA}$ $V_{DS} \ge V_{GS}$, $I_D = 0.25 \text{ mA}$, $T_j = +125 \text{ °C}$ $V_{DS} \ge V_{GS}$, $I_D = 0.25 \text{ mA}$, $T_j = -55 \text{ °C}$		VGS(th)1 VGS(th)2 VGS(th)3	2.0 1.0	4.0 5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_j = +125 \text{ °C}$		I _{GSS1} I _{GSS2}		±100 ±200	nA

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS					
Drain Current $V_{GS} = 0V, V_{DS} = 80 V$ $V_{GS} = 0V, V_{DS} = 160 V$	2N6788U 2N6790U	I _{DSS1}		25	μΑ
	2N6788U 2N6790U	I _{DSS2}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A pulsed}$	2N6788U 2N6790U	r _{DS(on)1}		0.30 0.80	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$	2N6788U 2N6790U	r _{DS(on)2}		0.35 0.85	Ω
Static Drain-Source On-State Resistance $T_j = +125$ °C: $V_{GS} = 10$ V, $I_D = 3.5$ A pulsed $V_{GS} = 10$ V, $I_D = 2.25$ A pulsed	2N6788U 2N6790U	۲ _{DS(on)3}		0.54 1.50	Ω
Diode Forward Voltage $V_{GS} = 0 V$, $I_D = 6.0 A$ pulsed $V_{GS} = 0 V$, $I_D = 3.5 A$ pulsed	2N6788U 2N6790U	V_{SD}		1.8 1.5	V

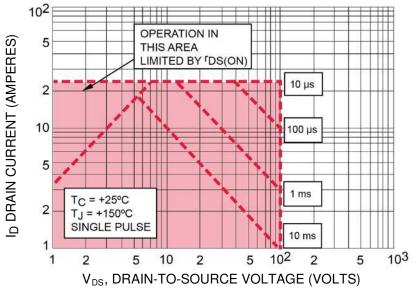
ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted (continued)

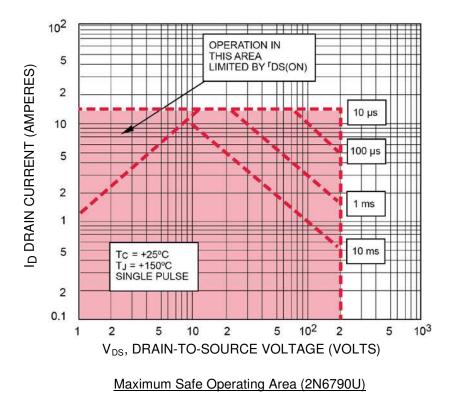
DYNAMIC CHARACTERISTICS


Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
	2N6788U 2N6790U	$Q_{g(on)}$		18.0 14.3	nC
Gate to Source Charge $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}, V_{DS} = 100 \text{ V}$	2N6788U 2N6790U	Q _{gs}		4.0 3.0	nC
Gate to Drain Charge $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}, V_{DS} = 100 \text{ V}$	2N6788U 2N6790U	Q_{gd}		9.0 9.0	nC

SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-on delay time					
$ I_D = 6.0 \text{ A}, \text{V}_{\text{GS}} = 10 \text{ V}, \text{R}_{\text{G}} = 7.5 \Omega, \text{V}_{\text{DD}} = 35 \text{ V} \\ I_D = 3.5 \text{ A}, \text{V}_{\text{GS}} = 10 \text{ V}, \text{R}_{\text{G}} = 7.5 \Omega, \text{V}_{\text{DD}} = 74 \text{ V} $	2N6788U 2N6790U	t _{d(on)}		40	ns
Rinse time					
$I_{D} = 6.0 \text{ A}, V_{GS} = 10 \text{ V}, R_{G} = 7.5 \Omega, V_{DD} = 35 \text{ V}$ $I_{D} = 3.5 \text{ A}, V_{GS} = 10 \text{ V}, R_{G} = 7.5 \Omega, V_{DD} = 74 \text{ V}$	2N6788U 2N6790U	tr		70 50	ns
Turn-off delay time					
$ I_D = 6.0 \text{ A}, \text{V}_{\text{GS}} = 10 \text{ V}, \text{R}_{\text{G}} = 7.5 \Omega, \text{V}_{\text{DD}} = 35 \text{ V} \\ I_D = 3.5 \text{ A}, \text{V}_{\text{GS}} = 10 \text{ V}, \text{R}_{\text{G}} = 7.5 \Omega, \text{V}_{\text{DD}} = 74 \text{ V} $	2N6788U 2N6790U	$t_{d(\text{off})}$		40 50	ns
Fall time					
$ I_D = 6.0 \text{ A}, \text{V}_{\text{GS}} = 10 \text{ V}, \text{R}_{\text{G}} = 7.5 \Omega, \text{V}_{\text{DD}} = 35 \text{ V} \\ I_D = 3.5 \text{ A}, \text{V}_{\text{GS}} = 10 \text{ V}, \text{R}_{\text{G}} = 7.5 \Omega, \text{V}_{\text{DD}} = 74 \text{ V} $	2N6788U 2N6790U	t _f		70 50	ns
Diode Reverse Recovery Time					
	2N6788U 2N6790U	t _{rr}		240 400	ns


GRAPHS


Maximum Drain Current vs. Case Temperature Graph

GRAPHS (continued)

Maximum Safe Operating Area (2N6788U)

Millimeters

1.27 BSC

0.635 BSC

0.203 BSC

2.67 REF

3.05 REF

Max

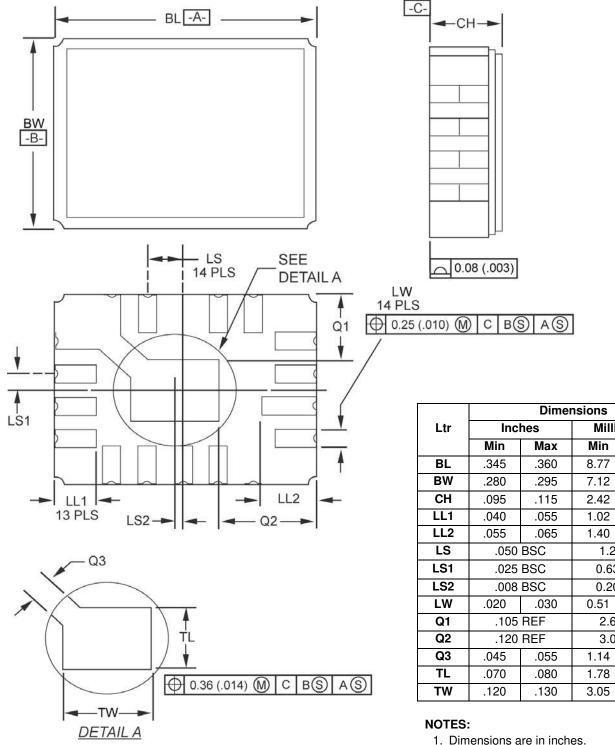
9.14

7.49

2.92

1.39

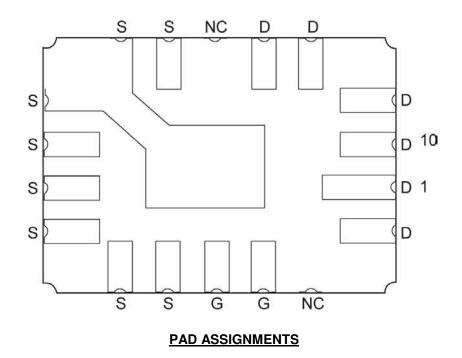
1.65


0.76

1.40

2.03

3.30


PACKAGE DIMENSIONS

- Millimeters are given for general information only.
- In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

PAD LAYOUT

