

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

N-CHANNEL MOSFET

Qualified per MIL-PRF-19500/555

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

These 2N6788 and 2N6790 devices are military qualified up to a JANTXV level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N6788 and 2N6790 number.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/555.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- High frequency operation.
- Lightweight package.
- ESD rated to class 1A.

MAXIMUM RATINGS @ T_C = +25 °C unless otherwise noted

Parameters / Test Conditions		Symbol	Value	Unit
Junction & Storage Temperature		T_J,T_stg	-55 to +150	°C
Thermal Resistance Junction-to-Case (see Fig.	<u>gure 1</u>)	R _{eJC}	6.25	ºC/W
Total Power Dissipation (1)		P _T	0.8	W
Drain to Gate Voltage	2N6788 2N6790	V_{DG}	100 200	V
Drain – Source Voltage	2N6788 2N6790	V_{DS}	100 200	V
Gate - Source Voltage		V _{GS}	± 20	V
Drain Current, dc @ $T_C = +25 ^{\circ}C^{(2)}$ (see Figure ?)	2N6788 2N6790	I _{D1}	6.0 3.5	Α
Drain Current, dc @ T _C = +100 °C	2N6788 2N6790	I _{D2}	3.5 2.25	Α
Off-State Current (3)	2N6788 2N6790	I _{DM}	24 14	A (pk)
Source Current	2N6788 2N6790	Is	6.0 3.5	Α

Notes:

- 1. Derated linearly by 0.16 W/°C for $T_C > +25$ °C.
- 2. The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires and may be limited due to pin diameter.

 $I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} x R_{DS(on)} @ T_J (max)}}$

3. $I_{DM} = 4 \times I_{D1}$; I_{D1} as calculated in note 2.

TO-205AF (formerly TO-39) Package

Also available in:

U-18 LCC Package

7

(surface mount) 2N6788U & 2N6790U

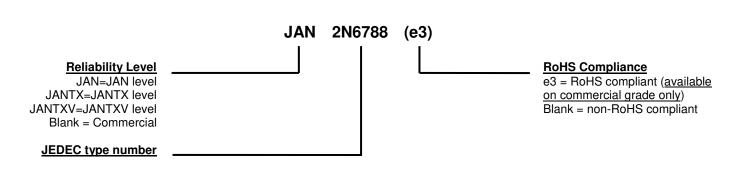
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- · CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Tin/lead solder dip nickel plate or RoHS compliant pure tin plate (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: Approximately 1.064 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Symbol Definition					
I_{D}	Drain current.					
I _F	Forward current.					
Tc	Case temperature.					
V_{DD}	Drain supply voltage.					
V_{DS}	Drain to source voltage.					
V_{GS}	Gate to source voltage.					

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERTICS				•	•
Drain-Source Breakdown Voltage V _{GS} = 0 V, I _D = 1 mA	2N6788 2N6790	$V_{(BR)DSS}$	100 200		V
Gate-Source Voltage (Threshold) $\begin{aligned} &V_{DS} \geq V_{GS}, \ I_D = 0.25 \ mA \\ &V_{DS} \geq V_{GS}, \ I_D = 0.25 \ mA, \ T_j = +125 \ ^{\circ}C \\ &V_{DS} \geq V_{GS}, \ I_D = 0.25 \ mA, \ T_j = -55 \ ^{\circ}C \end{aligned}$		V _{GS(th)1} V _{GS(th)2} V _{GS(th)3}	2.0 1.0	4.0 5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_j = +125 °C$		I _{GSS1}		±100 ±200	nA

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS					
Drain Current $V_{GS} = 0V$, $V_{DS} = 80 V$ $V_{GS} = 0V$, $V_{DS} = 160 V$	2N6788 2N6790	I _{DSS1}		25	μΑ
	2N6788 2N6790	I _{DSS2}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 2.25 \text{ A pulsed}$	2N6788 2N6790	r _{DS(on)1}		0.30 0.80	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$	2N6788 2N6790	r _{DS(on)2}		0.35 0.85	Ω
Static Drain-Source On-State Resistance $T_j = +125$ °C: $V_{GS} = 10$ V, $I_D = 3.5$ A pulsed $V_{GS} = 10$ V, $I_D = 2.25$ A pulsed	2N6788 2N6790	r _{DS(on)3}		0.54 1.50	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = 6.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 3.5 \text{ A pulsed}$	2N6788 2N6790	V _{SD}		1.8 1.5	V

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
On-State Gate Charge $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}, V_{DS} = 100 \text{ V}$	2N6788 2N6790	$Q_{g(on)}$		18.0 14.3	nC
Gate to Source Charge $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}, V_{DS} = 100 \text{ V}$	2N6788 2N6790	Q_gs		4.0 3.0	nC
Gate to Drain Charge $V_{GS} = 10 \text{ V}, I_D = 6.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}, V_{DS} = 100 \text{ V}$	2N6788 2N6790	Q_gd		9.0 9.0	nC

SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-on delay time $I_D=6.0~A,~V_{GS}=10~V,~R_G=7.5~\Omega,~V_{DD}=35~V$ $I_D=3.5~A,~V_{GS}=10~V,~R_G=7.5~\Omega,~V_{DD}=74~V$	2N6788 2N6790	t _{d(on)}		40	ns
Rinse time I_D = 6.0 A, V_{GS} = 10 V, R_G = 7.5 Ω , V_{DD} = 35 V I_D = 3.5 A, V_{GS} = 10 V, R_G = 7.5 Ω , V_{DD} = 74 V	2N6788 2N6790	t _r		70 50	ns
Turn-off delay time $I_D = 6.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 35 \text{ V}$ $I_D = 3.5 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = 74 \text{ V}$	2N6788 2N6790	t _{d(off)}		40 50	ns
Fall time I_D = 6.0 A, V_{GS} = 10 V, R_G = 7.5 Ω , V_{DD} = 35 V I_D = 3.5 A, V_{GS} = 10 V, R_G = 7.5 Ω , V_{DD} = 74 V	2N6788 2N6790	t _f		70 50	ns
Diode Reverse Recovery Time di/dt = 100 A/ μ s, V _{DD} \leq 50 V, I _F = 6.0 A di/dt = 100 A/ μ s, V _{DD} \leq 50 V, I _F = 3.5 A	2N6788 2N6790	t _{rr}		240 400	ns

GRAPHS

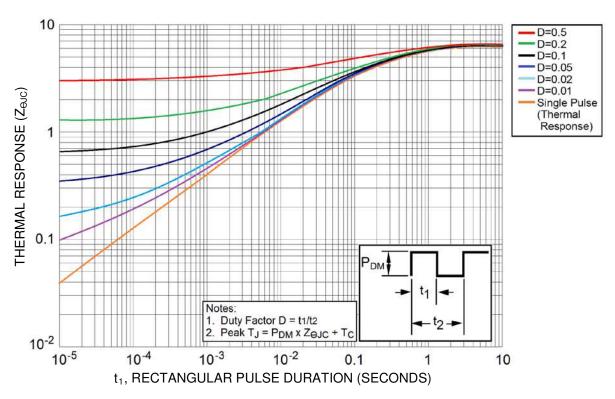
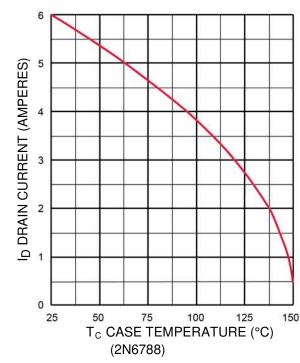



Figure 1
Thermal Impedance Curves

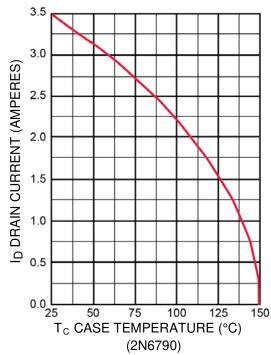
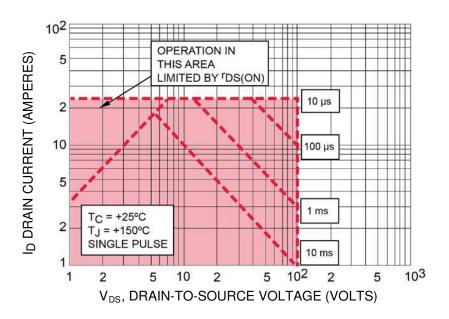
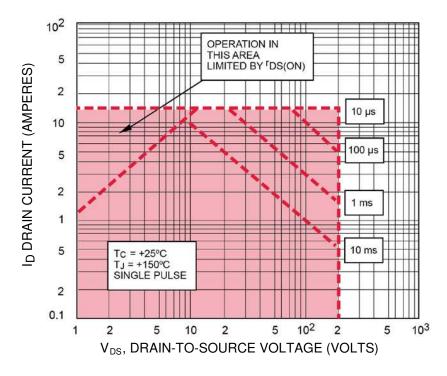
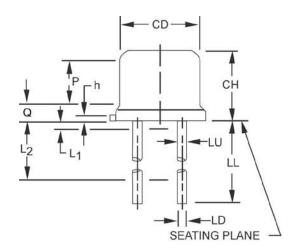
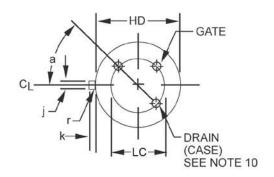



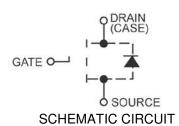
Figure 2


Maximum Drain Current vs. Case Temperature Graph

GRAPHS (continued)


Maximum Safe Operating Area (2N6788)




Maximum Safe Operating Area (2N6790)

PACKAGE DIMENSIONS

Ltr	Inch		Millir	neters	Notes
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
СН	.160	.180	4.07	4.57	
HD	.335	.370	8.51	9.40	
h	.009	.041	0.23	1.04	
J	.028	.034	0.71	0.86	3
k	.029	.045	0.74	1.14	3, 4
LD	.016	.021	0.41	0.53	7, 8
LL	.500	.750	12.7	19.05	7, 8, 12
LS	.200	.200 TP		8 TP	6
LU	.016	.019	0.41	0.48	7, 8
L1		.050		1.27	7, 8
L2	.250		6.35		7, 8
Р	.100	_	2.54		
Q		.050		1.27	5
r		.010		0.25	10
α	45° TP		45° TP		6

NOTES:

- Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TL shall be held for a minimum length of .011 inch (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- Body contour optional within zone defined by HD, CD, and Q.
- 6. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. Lead 1 = source, lead 2 = gate, lead 3 = drain.