imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2N7224, 2N7225, 2N7227 and 2N7228

N-CHANNEL MOSFET Qualified per MIL-PRF-19500/592

DESCRIPTION

This family of switching transistors is military qualified up to the JANTXV level for highreliability applications. These devices are also available in a low profile U surface mount package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surfacemount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N7224, 2N7225, 2N7227 and 2N7228 number series. •
- JAN, JANTX, and JANTXV gualifications are available per MIL-PRF-19500/592. (See part nomenclature for all available options.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- Low-profile design.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ T_A = +25°C unless otherwise stated

Parameters / Test Cond	Symbol	Value	Unit	
Operating & Storage Junction Temper	T _J & T _{stg}	-55 to +150	°C	
Thermal Resistance Junction-to-Case	Rejc	0.83	°C/W	
	@ $T_A = +25 °C$ @ $T_C = +25 °C^{(1)}$	Ρ _T	4 150	W
Gate-Source Voltage, dc		V _{GS}	± 20	V
Drain Current, dc @ T _C = +25 °C ⁽²⁾	2N7224 2N7225 2N7227 2N7228	I _{D1}	34.0 27.4 14.0 12.0	A
Drain Current, dc @ $T_c = +100 \ ^{\circ}C^{(2)}$	2N7224 2N7225 2N7227 2N7228	I _{D2}	21 17 9 8	A
Off-State Current (Peak Total Value)	³⁾ 2N7224 2N7225 2N7227 2N7228	I _{DM}	136 110 56 48	A (pk)
Source Current	2N7224 2N7225 2N7227 2N7228	I _S	34.0 27.4 14.0 12.0	A

NOTES: Derated linearly by 1.2 W/ $^{\circ}$ C for T_C > +25 $^{\circ}$ C. 1.

The following formula derives the maximum theoretical ID limit. ID is limited by package and internal 2. wires and may also be limited by pin diameter:

$$I_{D} = \sqrt{\frac{T_{J} (max) - T_{C}}{R_{\theta JC} x R_{DS(on)} @ T_{J} (max)}}$$

X)

Qualified Levels: JAN, JANTX, and JANTXV

TO-254AA Package

Also available in:

U (SMD-1 or TO-267AB) package (surface mount) 2N7224U & 2N7228U

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

 $I_{DM} = 4 \times I_{D1}$ as calculated in note 2. 3.

MECHANICAL and PACKAGING

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Part number, date code, and polarity symbol.
- WEIGHT: 6.5 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS						
Symbol	Definition					
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.					
I _F	Forward current					
R _G	Gate drive impedance					
V _{DD}	Drain supply voltage					
V _{DS}	Drain source voltage, dc					
V _{GS}	Gate source voltage, dc					

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage V _{GS} = 0 V, I _D = 1.0 mA	2N7224 2N7225 2N7227 2N7228	V _{(BR)DSS}	100 200 400 500		V
$ \begin{array}{l} \mbox{Gate-Source Voltage (Threshold)} \\ V_{DS} \geq V_{GS}, \ \mbox{I}_{D} = 0.25 \ \mbox{mA} \\ V_{DS} \geq V_{GS}, \ \mbox{I}_{D} = 0.25 \ \mbox{mA}, \ \mbox{T}_{J} = +125^{\circ}\mbox{C} \\ V_{DS} \geq V_{GS}, \ \mbox{I}_{D} = 0.25 \ \mbox{mA}, \ \mbox{T}_{J} = -55^{\circ}\mbox{C} \end{array} $		$\begin{array}{c} V_{GS(th)1} \\ V_{GS(th)2} \\ V_{GS(th)3} \end{array}$	2.0 1.0	4.0 5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_J = +125^{\circ}\text{C}$		I _{GSS1} I _{GSS2}		±100 ±200	nA
	2N7224 2N7225 2N7227 2N7228	I _{DSS1}		25	μA
$ \begin{array}{l} \text{Drain Current} \\ V_{GS} = 0 \ V, \ V_{DS} = 80 \ V, \ T_J = +125 \ ^\circ\text{C} \\ V_{GS} = 0 \ V, \ V_{DS} = 160 \ V, \ T_J = +125 \ ^\circ\text{C} \\ V_{GS} = 0 \ V, \ V_{DS} = 320 \ V, \ T_J = +125 \ ^\circ\text{C} \\ V_{GS} = 0 \ V, \ V_{DS} = 400 \ V, \ T_J = +125 \ ^\circ\text{C} \\ \end{array} $	2N7224 2N7225 2N7227 2N7228	I _{DSS2}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 21.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 17.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A pulsed}$	2N7224 2N7225 2N7227 2N7228	r _{DS(on)1}		0.070 0.100 0.315 0.415	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 34.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 27.4 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 14.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 12.0 \text{ A pulsed}$	2N7224 2N7225 2N7227 2N7228	r _{DS(on)2}		0.081 0.105 0.415 0.515	Ω
Static Drain-Source On-State Resistance $T_J = +125$ °C $V_{GS} = 10$ V, $I_D = 21.0$ A pulsed $V_{GS} = 10$ V, $I_D = 17.0$ A pulsed $V_{GS} = 10$ V, $I_D = 9.0$ A pulsed $V_{GS} = 10$ V, $I_D = 8.0$ A pulsed	2N7224 2N7225 2N7227 2N7228	r _{DS(on)3}		0.11 0.17 0.68 0.90	Ω
Diode Forward Voltage $V_{GS} = 0 V$, $I_D = 34.0 A$ pulsed $V_{GS} = 0 V$, $I_D = 27.4 A$ pulsed $V_{GS} = 0 V$, $I_D = 14.0 A$ pulsed $V_{GS} = 0 V$, $I_D = 12.0 A$ pulsed	2N7224 2N7225 2N7227 2N7228	V _{SD}		1.8 1.9 1.7 1.7	V

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted (continued)

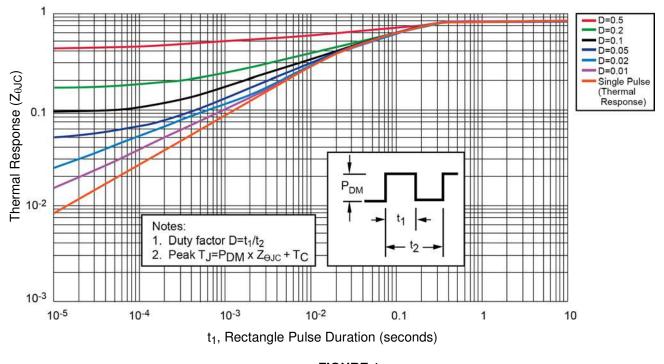
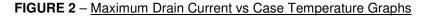
DYNAMIC CHARACTERISTICS

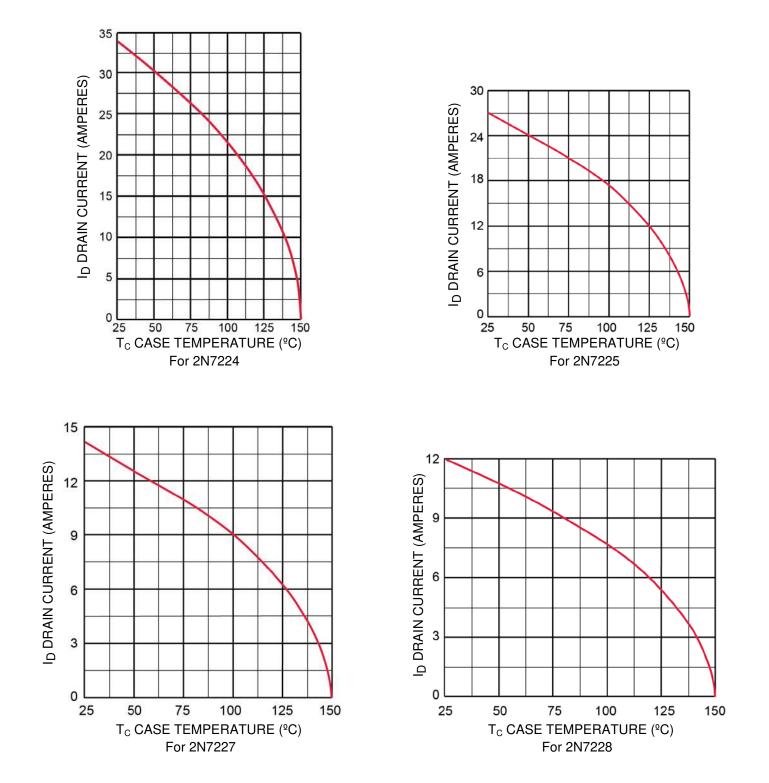
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
$ \begin{array}{l} \text{On-State Gate Charge} \\ \text{V}_{\text{GS}} = 10 \ \text{V}, \ \text{I}_{\text{D}} = 34.0 \ \text{A}, \ \text{V}_{\text{DS}} = 50 \ \text{V} \\ \text{V}_{\text{GS}} = 10 \ \text{V}, \ \text{I}_{\text{D}} = 27.4 \ \text{A}, \ \text{V}_{\text{DS}} = 50 \ \text{V} \\ \text{V}_{\text{GS}} = 10 \ \text{V}, \ \text{I}_{\text{D}} = 14.0 \ \text{A}, \ \text{V}_{\text{DS}} = 50 \ \text{V} \\ \text{V}_{\text{GS}} = 10 \ \text{V}, \ \text{I}_{\text{D}} = 12.0 \ \text{A}, \ \text{V}_{\text{DS}} = 50 \ \text{V} \\ \end{array} $	2N7224 2N7225 2N7227 2N7228	$Q_{g(on)}$		125 115 110 120	nC
$ \begin{array}{l} \mbox{Gate to Source Charge} \\ V_{GS} = 10 \ V, \ I_D = 34.0 \ A, \ V_{DS} = 50 \ V \\ V_{GS} = 10 \ V, \ I_D = 27.4 \ A, \ V_{DS} = 50 \ V \\ V_{GS} = 10 \ V, \ I_D = 14.0 \ A, \ V_{DS} = 50 \ V \\ V_{GS} = 10 \ V, \ I_D = 12.0 \ A, \ V_{DS} = 50 \ V \\ \end{array} $	2N7224 2N7225 2N7227 2N7228	Q _{gs}		22 22 18 19	nC
$\begin{array}{l} \mbox{Gate to Drain Charge} \\ V_{GS} = 10 \ V, \ I_D = 34.0 \ A, \ V_{DS} = 50 \ V \\ V_{GS} = 10 \ V, \ I_D = 27.4 \ A, \ V_{DS} = 50 \ V \\ V_{GS} = 10 \ V, \ I_D = 14.0 \ A, \ V_{DS} = 50 \ V \\ V_{GS} = 10 \ V, \ I_D = 12.0 \ A, \ V_{DS} = 50 \ V \end{array}$	2N7224 2N7225 2N7227 2N7228	Q _{gd}		65 60 65 70	nC

SWITCHING CHARACTERISTICS

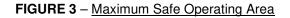
Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
Turn-on delay time					
$I_D = 34.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N7224				
$I_D = 27.4 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N7225	t		35	ns
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N7227	t _{d(on)}		- 55	115
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N7228				
Rinse time					
$I_D = 34.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N7224				
$I_D = 27.4 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N7225	+		190	20
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N7227	t _r		190	ns
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N7228				
Turn-off delay time					
$I_D = 34.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N7224				
$I_{D} = 27.4 \text{ A}, V_{GS} = 10 \text{ V}, R_{G} = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N7225	+		170	20
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N7227	t _{d(off)}		170	ns
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N7228				
Fall time					
$I_D = 34.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 50 \text{ V}$	2N7224				
$I_D = 27.4 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 100 \text{ V}$	2N7225	+		130	20
$I_D = 14.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 200 \text{ V}$	2N7227	t _f		130	ns
$I_D = 12.0 \text{ A}, V_{GS} = 10 \text{ V}, R_G = 2.35 \Omega, V_{DD} = 250 \text{ V}$	2N7228				
Diode Reverse Recovery Time					
di/dt ≤ 100 A/µs, V _{DD} ≤ 30 V, I _F = 34.0 A	2N7224			500	
di/dt ≤ 100 A/µs, $V_{DD} \le 30$ V, $I_F = 27.4$ A	2N7225	+		950	20
di/dt \leq 100 A/µs, V _{DD} \leq 30 V, I _F = 14.0 A	2N7227	t _{rr}		1200	ns
di/dt \leq 100 A/µs, V _{DD} \leq 30 V, I _F = 12.0 A	2N7228			1600	

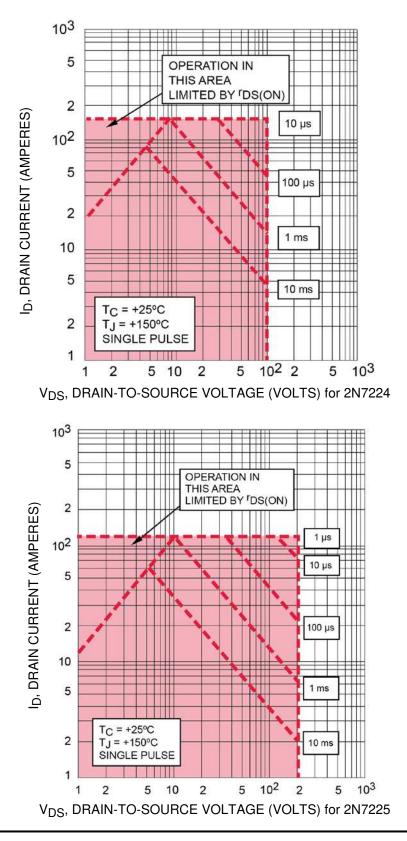
GRAPHS

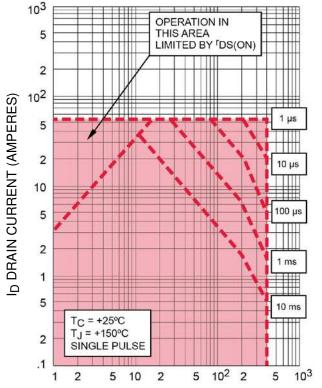



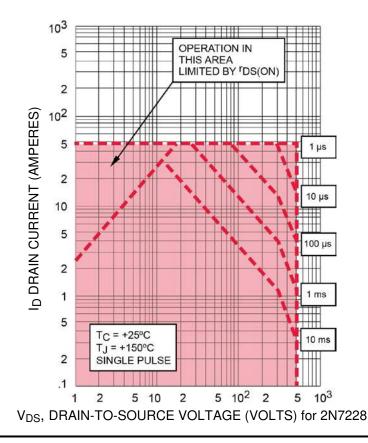

FIGURE 1 Thermal Impedance Curves

2N7224, 2N7225, 2N7227 and 2N7228

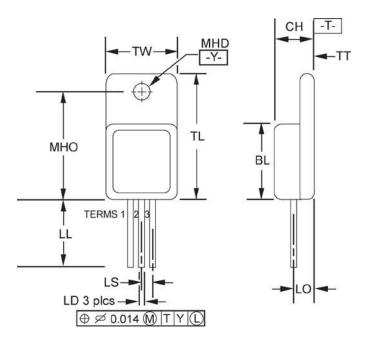

GRAPHS (continued)




GRAPHS (continued)



GRAPHS (continued)


V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) for 2N7227

2N7224, 2N7225, 2N7227 and 2N7228

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Glass meniscus included in dimension D and E.
- 4. All terminals are isolated from case.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Ltr	Inch		Millim	Notes	
	Min	Max	Min	Max	
BL	.535	.545	13.59	13.84	
СН	.249	.260	6.32	6.60	
LD	.035	.045	0.89	1.14	
LL	.510	.570	12.95	14.48	
LO	.150 BSC		3.81		
LS	.150 BSC		3.81		
MHD	.139	.149	3.53	3.53 3.78	
МНО	.665	.685	16.89	17.40	
TL	.790	.800	20.07	20.32	3, 4
TT	.040	.050	1.02	1.27	
тw	.535	.545	13.59	13.84	3, 4
Term 1	Drain				
Term 2	Source				
Term 3	Gate				