

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

VOIDLESS HERMETICALLY SEALED SWITCHING DIODES

Qualified per MIL-PRF-19500/578

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION

These popular JEDEC registered switching/signal diodes are military qualified and available with internal metallurgical bonded construction. These small low capacitance diodes with very fast switching speeds are hermetically sealed and bonded into a "D" package. They may be used in a variety of fast switching applications including computers and peripheral equipment such as magnetic cores, thin-film memories, plated-wire memories, as well as decoding or encoding applications, etc. Microsemi also offers a variety of other switching/signal diodes.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 1N6638, 1N6642, and 1N6643.
- Ultra fast recovery time.
- Very low capacitance.
- Metallurgically bonded.
- Non-cavity glass package.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/578.
- Replacements for 1N4148, 1N4148-1, 1N4150, 1N4150-1, and 1N914.
- RoHS compliant devices available (commercial grade only).

APPLICATIONS / BENEFITS

- Small size for high density mounting using flexible thru-hole leads (see package illustration).
- Ideal for:

High frequency data lines

RS-232 & RS-422 Interface Networks

Ethernet 10 Base T

Switching core drivers

LAN

Computers

MAXIMUM RATINGS @ $T_A = +25$ °C unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit	
Junction and Storage Temp	T _J and T _{STG}	-65 to +175	°C	
Thermal Resistance Junction-to-Lead	$R_{\Theta JL}$	150	°C/W	
Thermal Resistance Junction-to-Ambie	ent ⁽¹⁾	R _{OJA}	250	°C/W
Peak Forward Surge Current @ T _A = +	I _{FSM}	2.5	Α	
(Test pulse = 8.3 ms, half-sine wave.)				
Average Rectified Forward Current @	Io	300	mA	
(Derate at 3.0 mA/ $^{\circ}$ C above T _L = +75 $^{\circ}$				
Breakdown Voltage:	1N6638	V_{BR}	150	V
	1N6642		100	
	1N6643		75	
Working Peak Reverse Voltage:	1N6638	V_{RWM}	125	V
	1N6642		75	
	1N6643		50	

NOTES: 1. T_A = +75 °C on printed circuit board (PCB), PCB = FR4 - .0625 inch (1.59 mm) 1-layer 1-Oz Cu, horizontal, in still air; pads for axial = .092 inch (2.34 mm) diameter, strip = .030 inch (0.76 mm) x 1 inch (25.4 mm) long, lead length L ≤ .187 inch (≤ 4.75 mm); R_{⊙JA} with a defined PCB thermal resistance condition included, is measured at I_O = 300 mA.

"D" Package

Also available in:

"B" SQ MELF or D-5B Package

1

(surface mount)

1N6638US 42US 43US

MSC - Lawrence

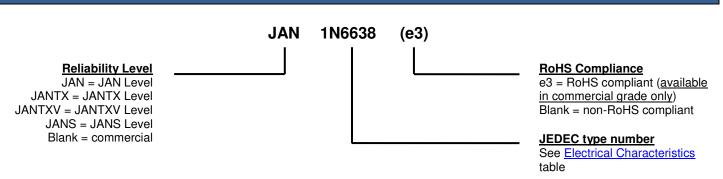
6 Lake Street, Lawrence, MA 01841 1-800-446-1158 Tel: (978) 620-2600 Fax: (978) 689-0803

Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Voidless hermetically sealed hard glass.
- TERMINALS: Tin-lead plate with >3% lead. Solder dip is available upon request.
- MARKING: Body painted and alpha numeric.
- POLARITY: Cathode indicated by band.
- Tape & Reel option: Standard per EIA-296. Consult factory for quantities.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
V_{BR}	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.					
V _{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range.					
V_{F}	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.					
I _F	Forward Current: The forward current dc value, no alternating component.					
I _R	Maximum Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.					
С	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.					
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified recovery decay point after a peak reverse current is reached.					

ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted.

TYPE	MAXIMUM FORWARD VOLTAGE V _F @ I _F		MAXIMUM DC REVERSE CURRENT		REVERSE RECOVERY TIME t _{rr} (Note 1)	MAXIMUM FORWARD RECOVERY VOLTAGE AND TIME		MAXIMUM JUNCTION CAPACITANCE f = 1 MHz Vsig = 50 mV			
NUMBER			I _{R1}	I_{R2}	I _{R3}	I_{R4}		I _F =200mA, t _r =1ns		(p-p)	
			V _R =	V _R =V _{RWM}	V _R =20 V	V _R =V _{RWM}					
			20 V		T _A = +150 °C	T _A = +150 °C		V _{FRM}	t _{fr}	V _R =0 V	V _R =1.5 V
	V @ mA	V @ mA	nA	nA	μА	μА	ns	٧	ns	pf	pf
1N6638	0.8 V @ 10 mA	1.1 V @ 200 mA	35	500	50	100	4.5	5.0	20	2.5	2.0
1N6642	0.8 V @ 10 mA	1.2 V @ 100 mA	25	500	50	100	5.0	5.0	20	5.0	2.8
1N6643	0.8 V @ 10 mA	1.2 V @ 100 mA	50	500	75	100	6.0	5.0	20	5.0	2.8

NOTE: 1. Reverse Recovery Time Test Conditions – $I_F = I_R = 10$ mA, $I_{R(REC)} = 1.0$ mA, C = 3 pF, $R_L = 100$ ohms.

GRAPHS

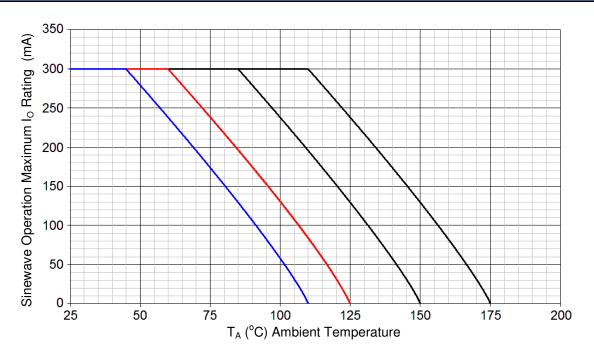


FIGURE 1
Temperature – Current Derating

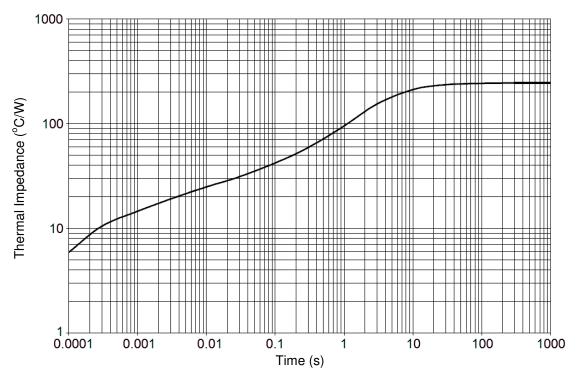


FIGURE 2

Maximum Thermal Impedance at $T_A = 55$ °C

GRAPHS (continued)

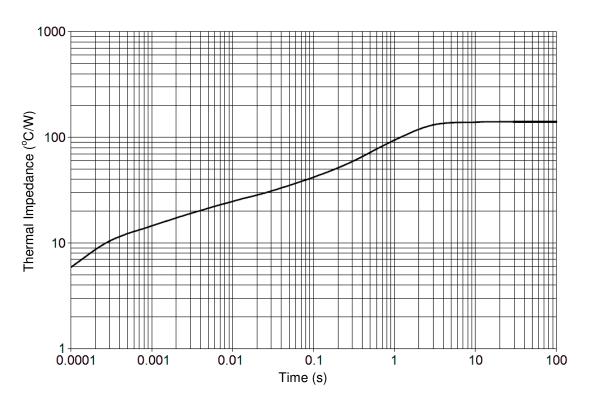
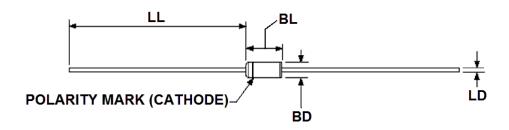



FIGURE 3 Maximum Thermal Impedance at $T_L = 25$ °C

PACKAGE DIMENSIONS

	INCH		MILLIM		
DIM	MIN	MAX	MIN	MAX	NOTES
BD	0.056	0.080	1.42	2.03	2
BL	0.130	0.180	3.30	4.57	
LD	0.018	0.022	0.46	0.56	3
LL	1.00	1.50	25.40	38.10	

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- 2. Dimension BD shall be measured at the largest diameter.
- 3. The specified lead diameter applies in the zone between .050 inch (1.27 mm) from the diode body to the end of the lead. Outside of this zone lead shall not exceed BD.
- 4. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.