

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

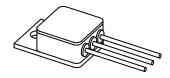
PNP POWER SILICON SWITCHING TRANSISTOR

Qualified per MIL-PRF-19500/612

DEVICES

2N7372

JAN
JANTX
JANTXV
JANS


ABSOLUTE MAXIMUM RATINGS (T_C = +25°C unless otherwise noted)

Parameters / Test Conditions	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Collector-Base Voltage	V_{CBO}	100	Vdc
Emitter-Base Voltage	V_{EBO}	5.5	Vdc
Collector Current	I_{C}	5.0	Adc
Total Power Dissipation \textcircled{a} $T_A = +25^{\circ}C^{(1)}$ \textcircled{a} $T_C = +25^{\circ}C^{(2)}$	P_{T}	4.0 58	W
Operating & Storage Junction Temperature Range	T_j , T_{stg}	-65 to +200	°C
Thermal Resistance, Junction-to Case	$R_{ heta JC}$	3	°C/W

- 1) Derate linearly 22.8mW/ $^{\circ}$ C for $T_A > 25 ^{\circ}$ C
- 2) Derate linearly $331 \text{mW/}^{\circ}\text{C}$ for $T_C > 25^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS ($T_A = +25$ °C, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit		
OFF CHARACTERISTICS						
	V _{(BR)CEO}	80		Vdc		
Collector-Emitter Cutoff Current $V_{CE} = 60 Vdc$, $V_{BE} = 0 Vdc$ $V_{CE} = 100 Vdc$, $V_{BE} = 0 Vdc$	$I_{\text{CES1}} \\ I_{\text{CES2}}$		1.0 1.0	μAdc mAdc		
Collector-Emitter Cutoff Current $V_{CE} = 40 V dc, I_B = 0$	I _{CEO}		50	μAdc		
Emitter-Base Cutoff Current $V_{EB} = 4.0 V dc$ $V_{EB} = 5.5 V dc$	I _{EBO1} I _{EBO2}		1.0 1.0	μAdc mAdc		

TO-254AA

PIN 1 = BASE

PIN 2 = COLLECTOR

PIN 3 = EMITTER

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

PNP POWER SILICON SWITCHING TRANSISTOR

Qualified per MIL-PRF-19500/612

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted) (CONT.)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)				
$\begin{aligned} & Forward\text{-}Current \ Transfer \ Ratio \\ & I_C = 0.05 Adc, \ V_{CE} = 5.0 Vdc \\ & I_C = 2.5 Adc, \ V_{CE} = 5.0 Vdc \\ & I_C = 5.0 Adc, \ V_{CE} = 5.0 Vdc \end{aligned}$	h _{FE1} h _{FE2} h _{FE3}	50 70 40	200	
Base-Emitter Non-Saturated Voltage $V_{CE} = 5.0 Vdc$, $I_C = 2.5 Adc$	$V_{ m BE}$		1.45	Vdc
Base-Emitter Saturation Voltage $I_C = 2.5 Adc$, $I_B = 0.25 Adc$ $I_C = 5.0 Adc$, $I_B = 0.5 Adc$	$\begin{matrix} V_{BE(sat)1} \\ V_{BE(sat)2} \end{matrix}$		1.45 2.2	Vdc
Collector-Emitter Saturation Voltage $I_C = 2.5 Adc$, $I_B = 0.25 Adc$ $I_C = 5.0 Adc$, $I_B = 0.5 Adc$	$\begin{matrix} V_{CE(sat)1} \\ V_{CE(sat)2} \end{matrix}$		0.75 1.5	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Common Emitter Small Signal, Short Circuit Forward Current Transfer Ratio $V_{CE} = 5Vdc, I_C = 100 mAdc, f = 1 kHz \label{eq:VCE}$	h_{fe}	50		
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_{C}=0.5 Adc,V_{CE}=5 Vdc,f=10 MHz$	$ h_{\mathrm{fe}} $	7.0		
Output Capacitance $V_{CB} = 10 V dc, \ I_E = 0, \ 100 kHz \le f \le 1.0 MHz$	C _{obo}		250	pF

SAFE OPERATING AREA

DC Tests

 $T_C = +25^{\circ}C$, 1 Cycle, t = 1s

Test 1

 $V_{CE} = 12Vdc$, $I_C = 5.0Adc$

Test 2

 $V_{CE} = 32Vdc$, $I_C = 1.5Adc$

Test 3

 $V_{CE} = 80 \text{Vdc}, I_C = 100 \text{mAdc}$

(3) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$