

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

6 Lake Street, Lawrence, MA 01841

1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

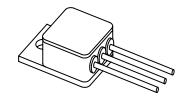
Website: http://www.microsemi.com

RADIATION HARDENED N-CHANNEL MOSFET

Reference MIL-PRF-19500/603

DEVICES

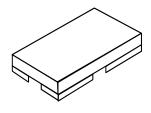
2N7269 2N7269U


LEVELS
(100K PAD

JANSR (100K RAD(Si)) JANSF (300K RAD(Si))

Parameters / Test Conditions	Symbol	Value	Unit
Drain – Source Voltage	V_{DS}	200	Vdc
Gate – Source Voltage	V_{GS}	± 20	Vdc
Continuous Drain Current $T_C = +25^{\circ}C$	I_{D1}	26.0	Adc
Continuous Drain Current $T_C = +100^{\circ}C$	I_{D2}	16.0	Adc
Max. Power Dissipation	P_{tl}	150 (1)	W
Drain to Source On State Resistance	R _{ds(on)}	0.100 (2)	Ω
Operating & Storage Temperature	T _{op} , T _{stg}	-55 to +150	°C

Note: (1) Derated Linearly by 1.2 W/ $^{\circ}$ C for $T_C > +25 ^{\circ}$ C


(2) $V_{GS} = 12Vdc$, $I_D = 16.0A$

TO-254AA JANSR2N7269, JANSF2N7269 See Figure 1

PRE-IRRADIATION ELECTRICAL CHARACTERISTICS ($T_A = +25$ °C, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Drain-Source Breakdown Voltage $V_{GS} = 0V$, $I_D = 1$ mAdc	V _{(BR)DSS}	200		Vdc
$\begin{aligned} & \text{Gate-Source Voltage (Threshold)} \\ & V_{DS} \geq V_{GS}, I_D = 1.0 \text{mA} \\ & V_{DS} \geq V_{GS}, I_D = 1.0 \text{mA}, T_j = +125 ^{\circ}\text{C} \\ & V_{DS} \geq V_{GS}, I_D = 1.0 \text{mA}, T_j = -55 ^{\circ}\text{C} \end{aligned}$	$V_{GS(th)1} \\ V_{GS(th)2} \\ V_{GS(th)3}$	2.0 1.0	4.0 5.0	Vdc
$\begin{aligned} &\text{Gate Current} \\ &V_{GS} = \pm 20 \text{V}, V_{DS} = 0 \text{V} \\ &V_{GS} = \pm 20 \text{V}, V_{DS} = 0 \text{V}, T_j = +125 ^{\circ}\text{C} \end{aligned}$	$I_{GSS1} \\ I_{GSS2}$		±100 ±200	nAdc
$\begin{array}{l} Drain \ Current \\ V_{GS} = 0V, \ V_{DS} = 160V \\ V_{GS} = 0V, \ V_{DS} = 200V, \ T_j = +125^{\circ}C \\ V_{GS} = 0V, \ V_{DS} = 160V, \ T_j = +125^{\circ}C \end{array}$	$I_{DSS1} \\ I_{DSS2} \\ I_{DSS3}$		25 1.0 0.25	μAdc mAdc mAdc
	r _{DS(on)1} r _{DS(on)2} r _{DS(on)3}		0.100 0.110 0.200	Ω Ω
Diode Forward Voltage $V_{GS} = 0V$, $I_D = 26.0A$ pulsed	$ m V_{SD}$		1.4	Vdc

U-PKG (SMD-1) (TO-267AB) JANSR2N7269U, JANSF2N7269U See Figure 2

6 Lake Street, Lawrence, MA 01841

1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

RADIATION HARDENED N-CHANNEL MOSFET

Reference MIL-PRF-19500/603

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
	$\begin{array}{c}Q_{g(on)}\\Q_{gs}\\Q_{gd}\end{array}$		170 30 60	nC

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
Switching time tests: Turn-on delay time Rinse time Turn-off delay time Fall time	I_D = 26.0A, V_{GS} = 12Vdc, Gate drive impedance = 2.35 Ω , V_{DD} = 50Vdc	$t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f$		33 140 140 140	ns
Diode Reverse Recovery Time	$\begin{aligned} &di/dt \leq 100 A/\mu s, \ V_{DD} \leq 30 V, \\ &I_F = 26.0 A \end{aligned}$	t _{rr}		820	ns

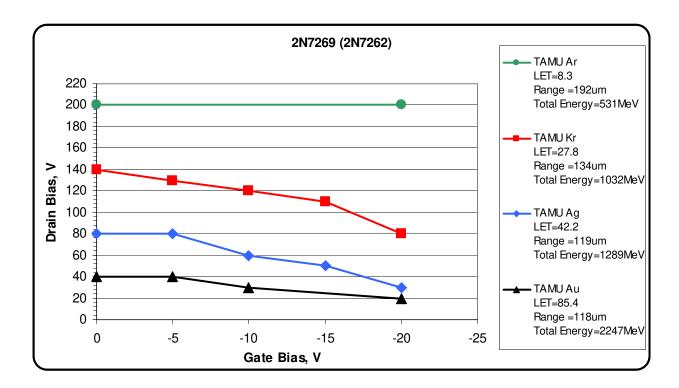
POST-IRRADIATION ELECTRICAL CHARACTERISTICS (3) $(T_A = +25^{\circ}C, unless \ otherwise \ noted)$

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Drain-Source Breakdown Voltage $V_{GS} = 0V$, $I_D = 1$ mAdc	$V_{(BR)DSS}$	200		Vdc
$\begin{aligned} & \text{Gate-Source Voltage (Threshold)} \\ & V_{DS} \geq V_{GS}, I_D = 1.0 \text{mA} \text{MSR} \\ & V_{DS} \geq V_{GS}, I_D = 1.0 \text{mA} \text{MSF} \end{aligned}$	$\begin{matrix} V_{GS(th)1} \\ V_{GS(th)1} \end{matrix}$	2.0 1.25	4.0 4.5	Vdc
Gate Current $V_{GS} = \pm 20V$, $V_{DS} = 0V$	I_{GSS1}		±100	nAdc
	I_{DSS1}		25 50	μAdc
Static Drain-Source On-State Voltage $V_{GS} = 12V, I_D = 16.0A$ pulsed MSR $V_{GS} = 12V, I_D = 16.0A$ pulsed MSF	V _{DS(on)}		1.6 2.48	Vdc
Diode Forward Voltage $V_{GS} = 0V$, $I_D = 26.0A$ pulsed	$ m V_{SD}$		1.4	Vdc

NOTE:

(3) Post-Irradiation Electrical Characteristics apply to devices subjected to Steady State Total Dose Irradiation testing in accordance with MIL-STD-750 Method 1019. Separate samples are tested for VGS bias (12V), and VDS bias (160V) conditions.

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803


Website: http://www.microsemi.com

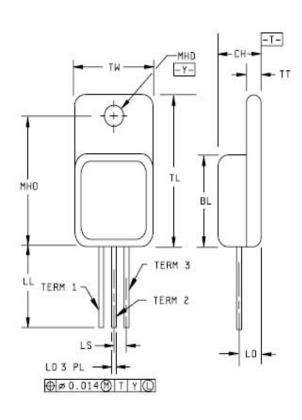
RADIATION HARDENED N-CHANNEL MOSFET

Reference MIL-PRF-19500/603

Single Event Effect (SEE) Characteristics:

Heavy Ion testing of the 2N7269 device was completed by similarity of die structure to the 2N7262. The 2N7262 has been characterized at the Texas A&M cyclotron. The following SOA curve has been established using the elements, LET, range, and Total Energy conditions as shown:

It should be noted that total energy levels are considered to be a factor in SEE characterization. Comparisons to other datasets should not be based on LET alone. Please consult factory for more information.


6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

RADIATION HARDENED N-CHANNEL MOSFET

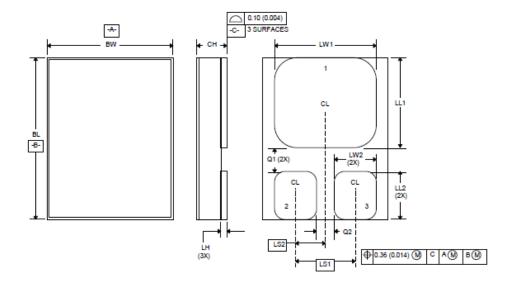
Reference MIL-PRF-19500/603

	Dimensions				
Symbol	Inc	hes	Millimeters		
	Min	Max	Min	Max	
BL	.535	.545	13.59	13.84	
СН	.249	.260	6.32	6.60	
LD	.035	.045	0.89	1.14	
LL	.510	.570	12.95	14.48	
LO	.150	.150 BSC 3.81		BSC	
LS	.150 BSC		3.81 BSC		
MHD	.139	.149	3.53	3.78	
мно	.665	.685	16.89	17.40	
TL	.790	.800	20.07	20.32	
TT	.040	.050	1.02	1.27	
TW	.535	.545	13.59	13.84	
Term 1	Drain				
Term 2	Source				
Term 3	Gate				

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Refer to applicable symbol list.
- 4. In accordance with ASME Y14.5M, diameters are equivalent to 6x symbology.
- 5. All terminals are isolated from case.

Figure 1: Case Outline and Pin Configuration for JANSR2N7269 & JANSF2N7269



6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

RADIATION HARDENED N-CHANNEL MOSFET

Reference MIL-PRF-19500/603

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. The lid shall be electrically isolated from the drain, gate and source.
- 4. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

	Dimensions			
Symbol	SMD-1			
	Inches Millimeters			neters
	Min	Max	Min	Max
BL	.620	.630	15.75	16.00
BW	.445	.455	11.30	11.56
CH		.142		3.60
LH	.010	.020	0.26	0.50
LL_1	.410	.420	10.41	10.67
LL_2	.152	.162	3.86	4.11
LS_1	.210 BSC 5.33 BSC			BSC
LS_2	.105 BSC		2.67 BSC	
LW ₁	.370	.380	9.40	9.65
LW_2	.135	.145	3.43	3.68
Q_1	.030		0.76	
Q_2	.035		0.89	
Term 1	Drain			
Term 2	Gate			
Term 3	Source			

Figure 2: Case Outline and Pin Configuration for JANSR2N7269U & JANSF2N7269U