

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NPN SILICON TRANSISTOR

Qualified per MIL-PRF-19500/366

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION

This family of 2N3498 thru 2N3501 epitaxial planar transistors are military qualified up to a JANS level for high-reliability applications. These devices are also available in TO-5 and low profile U4 packaging. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both throughhole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N3498 through 2N3501 series.
- JAN, JANTX, JANTXV, and JANS qualifications are available per MIL-PRF-19500/366.
 (See part nomenclature for all available options.)
- RoHS compliant versions available (commercial grade only).

• General purpose transistors for medium power applications requiring high frequency switching and low package profile.

APPLICATIONS / BENEFITS

Military and other high-reliability applications.

TO-39 (TO-205AD) Package

Also available in:

TO-5 package (long-leaded) 2N3498L – 2N3501L

MAXIMUM RATINGS

Parameters / Test Conditions		Symbol	2N3498 2N3499	2N3500 2N3501	Unit
Collector-Emitter Voltage		V_{CEO}	100	150	٧
Collector-Base Voltage		V_{CBO}	100	150	٧
Emitter-Base Voltage		V_{EBO}	6.0	6.0	V
Collector Current		Ic	500	300	mA
Thermal Resistance Junction-to-Ambient		$R_{\Theta JA}$	175		°C/W
Thermal Resistance Junction-to-Case		Rejc	30		°C/W
Total Power Dissipation	@ $T_A = +25 {}^{\circ}\text{C}^{(1)}$ @ $T_C = +25 {}^{\circ}\text{C}^{(2)}$	P _T	1.0 5.0		W
Operating & Storage Junction Temperature Range		T _J , T _{stg}	-65 to +200		°C

Notes: 1. See figure 1.

2. See figure 2.

MSC - Lawrence

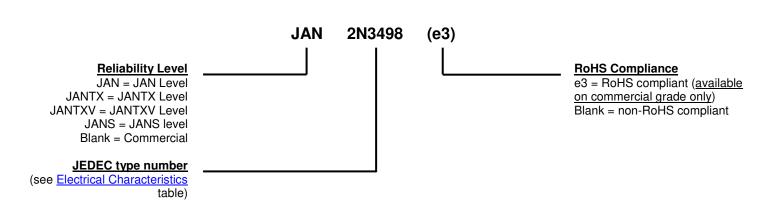
6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600

Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Leads are kovar, nickel plated, and finish is solder dip (Sn63/Pb37). Can be RoHS compliant with pure matte-tin (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: Approximately 1.064 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS				
Symbol	Definition			
C_{obo}	Common-base open-circuit output capacitance			
I _{CEO}	Collector cutoff current, base open			
I _{CEX}	Collector cutoff current, circuit between base and emitter			
I _{EBO}	Emitter cutoff current, collector open			
h _{FE}	Common-emitter static forward current transfer ratio			
V_{CEO}	Collector-emitter voltage, base open			
V_{CBO}	Collector-emitter voltage, emitter open			
V_{EBO}	Emitter-base voltage, collector open			

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Characteristic		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 10$ mA, pulsed	2N3498, 2N3499 2N3500, 2N3501	$V_{(BR)CEO}$	100 150		V
Collector-Base Cutoff Current					
$V_{CB} = 50 \text{ V}$	2N3498, 2N3499	I_{CBO}		50	nA
$V_{CB} = 75 \text{ V}$	2N3500, 2N3501			50	nA
V _{CB} = 100 V	2N3498, 2N3499			10	μA
V _{CB} = 150 V	2N3500, 2N3501			10	μΑ
Emitter-Base Cutoff Current					
$V_{EB} = 4.0 \text{ V}$		I _{EBO}		25	nA
$V_{EB} = 6.0 \text{ V}$				10	μΑ

ON CHARACTERISTICS (1)

ON CHARACTERISTICS "					
Forward-Current Transfer Ratio					
$I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$	2N3498, 2N3500	h_{FE}	20		
	2N3499, 2N3501		35		
$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}$	2N3498, 2N3500		25		
	2N3499, 2N3501		50		
$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	2N3498, 2N3500		35		
	2N3499, 2N3501		75 40	120	
$I_C = 150 \text{ mA}, V_{CE} = 10 \text{ V}$	2N3498, 2N3500		40 100	300	
	2N3499, 2N3501		15	300	
$I_C = 300 \text{ mA}, V_{CE} = 10 \text{ V}$	2N3500		20		
	2N3501		15		
$I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V}$	2N3498 2N3499		20		
	2110433				
Collector-Emitter Saturation Voltage					
$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$	All Types	$V_{CE(sat)}$		0.2	V
$I_C = 300 \text{ mA}, I_B = 30 \text{ mA}$	2N3498, 2N3499			0.6	
$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	2N3500, 2N3501			0.4	
Base-Emitter Saturation Voltage					
$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$	All Types	$V_{BE(sat)}$		0.8	V
$I_C = 300 \text{ mA}, I_B = 30 \text{ mA}$	2N3498, 2N3499	, ,		1.4	
$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	2N3500, 2N3501			1.2	

DYNAMIC CHARACTERISTICS

Forward Current Transfer Ratio, Magnitude $I_C = 20$ mA, $V_{CE} = 20$ V, $f = 100$ MHz		h _{fe}	1.5	8.0	
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0,$ $100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	2N3498, 2N3499 2N3500, 2N3501	C_obo		10 8.0	pF
Input Capacitance $V_{EB} = 0.5 \text{ V, } I_C = 0, 100 \text{ kHz} \leq f \leq 1.0 \text{ MHz}$		C _{ibo}		80	pF

⁽¹⁾ Pulse Test: pulse width = 300 μ s, duty cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

SWITCHING CHARACTERISTICS

Characteristic	Symbol	Min.	Max.	Unit
Turn-On Time $V_{EB} = 5 \text{ V}; I_{C} = 150 \text{ mA}; I_{B1} = 15 \text{ mA}$	^t on		115	ns
Turn-Off Time $I_C = 150 \text{ mA}$; $I_{B1} = I_{B2} = -15 \text{ mA}$	^t off		1150	ns

SAFE OPERATING AREA (See SOA figure and reference MIL-STD-750 method 3053)

DC Tests $T_{C} = +25 \ ^{o}C, \ t_{r} \ge 10 \ ns; \ 1 \ Cycle, \ t = 1.0 \ s$

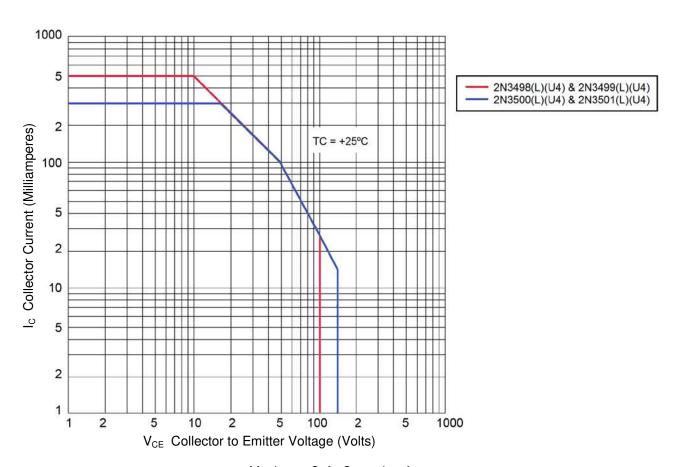
Test 1

 $V_{CE} = 10 \text{ V}, I_C = 500 \text{ mA}$ 2N3498, 2N3499 $V_{CE} = 16.67 \text{ V}, I_C = 300 \text{ mA}$ 2N3500, 2N3501

Test 2

 $V_{CE} = 50 \text{ V}, I_{C} = 100 \text{ mA}$ All Types

Test 3


 $V_{CE} = 80 \text{ V}, I_{C} = 40 \text{ mA}$ All Types

Clamped Switching

 $T_A = +25$ °C

Test 1

$$\begin{split} I_B = 85 \text{ mA}, \ I_C = 500 \text{ mA} & 2N3498, \ 2N3499 \\ I_B = 50 \text{ mA}, \ I_C = 300 \text{ mA} & 2N3500, \ 2N3501 \end{split}$$

Maximum Safe Operating Area

GRAPHS

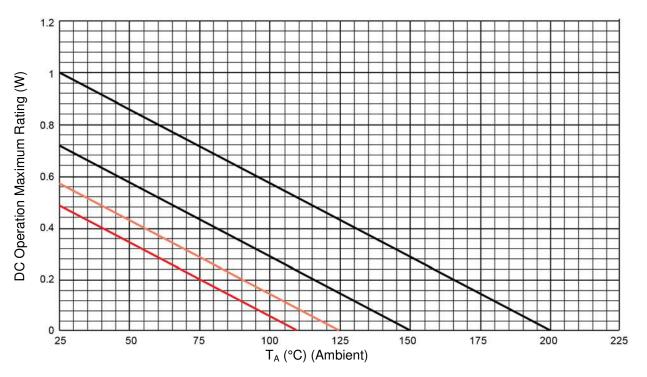


FIGURE 1 Derating for all devices $(R_{\theta JA})$

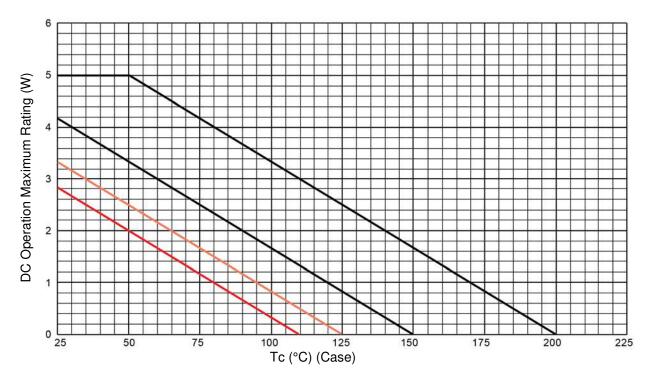
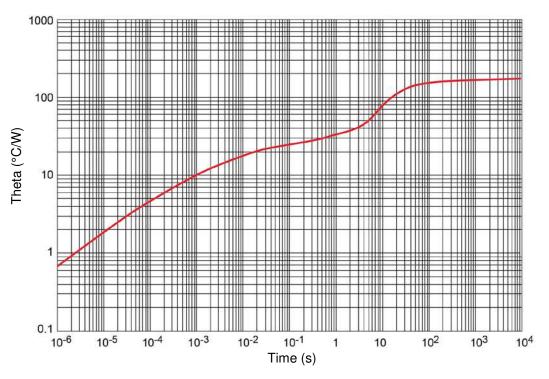
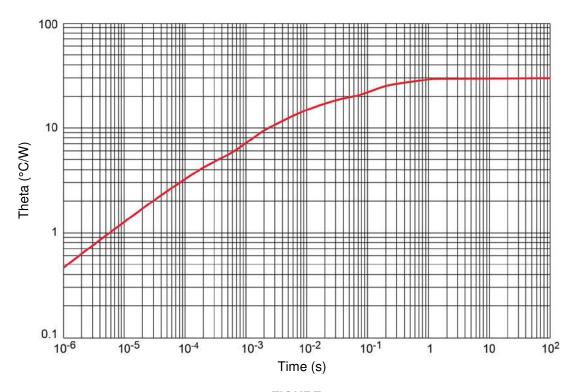
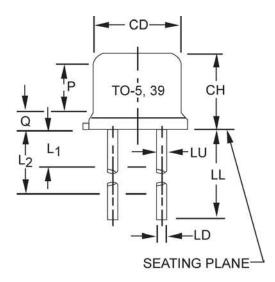
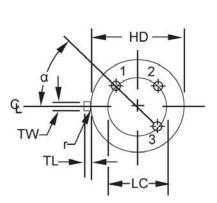


FIGURE 2 Derating for all devices ($R_{\theta JC}$)

GRAPHS


FIGURE 3
Thermal Impedance Graph (R_{0JA})

PACKAGE DIMENSIONS

Dimensions						
Symbol	Inch		Millim	Note		
	Min	Max	Min	Max		
CD	0.305	0.335	7.75	8.51		
СН	0.240	0.260	6.10	6.60		
HD	0.335	0.370	8.51	9.40		
LC	0.20	00 TP	5.08 TP		6	
LD	0.016	0.021	0.41	0.53	7	
LL	9	See notes 7, 12 and 13		es 7, 12 and 13		
LU	0.016	0.019	0.41	0.48	7, 13	
L1		0.050		1.27	13	
L2	0.250		6.35		13	
Р	0.100		2.54		5	
Q		0.050		1.27	4	
TL	0.029	0.045	0.74	1.14	3	
TW	0.028	0.034	0.71	0.86	10, 11	
r		0.010		0.25	11	
α	45	° TP	45° TP		6	

NOTES:

- 1. Dimension are in inches.
- 2. Millimeters are given for general information only.
- 3. Symbol TL is measured from HD maximum.
- 4. Details of outline in this zone are optional.
- 5. Symbol CD shall not vary more than .010 (0.25 mm) in zone P. This zone is controlled for automatic handling.
- 6. Leads at gauge plane .054 inch (1.37 mm) +.001 inch (0.03 mm) -.000 inch (0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) relative to tab. Device may be measured by direct methods or by gauge.
- 7. Symbol LD applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Lead diameter shall not exceed .042 inch (1.07 mm) within L1 and beyond LL minimum.
- 8. Lead designation, shall be as follows: 1 emitter, 2 base, 3 collector.
- 9. Lead number three is electrically connected to case.
- 10. Beyond r maximum, TW shall be held for a minimum length of .011 inch (0.28 mm).
- 11. Symbol r applied to both inside corners of tab.
- For transistor types 2N3498, 2N3499, 2N3500, and 2N3501, LL = .50 inch (12.7 mm) minimum and .750 inch (19.1 mm) maximum. For transistor types 2N3498L, 2N3499L, 2N3500L, and 2N3501L, LL = 1.50 inches (38.1 mm) minimum and 1.750 inches (44.5 mm) maximum.
- 13 All three leads
- 14. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.