: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

PNP SILICON LOW POWER TRANSISTOR
 Qualified per MIL-PRF-19500/350

DEVICES

2N3867	2N3867S
2N3868	2N3868S

LEVELS

JAN JANTX JANTXV JANS

ABSOLUTE MAXIMUM RATINGS $\left(T_{C}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameters / Test Conditions	Symbol	2N3867	2N3868	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	40	60	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	40	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc	
Collector Current	I_{C}	3.0	mAdc	
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}^{(1)}$	P_{T}	1.0	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$	
Operating \& Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$	

THERMAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	175	${ }^{\circ} \mathrm{C} / \mathrm{mW}$

Note: * Electrical characteristics for "S" suffix devices are identical to the "non S" corresponding devices.
$1 /$ Derate linearly $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C}$
2/ Derate linearly $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>+25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERTICS					
Collector-Emitter Breakdown Cur $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc}$	$\begin{aligned} & \text { nt } \\ & \text { 2N3867, S } \\ & \text { 2N3868, S } \end{aligned}$	$\mathrm{V}_{\text {(BR)CEO }}$	$\begin{aligned} & 40 \\ & 60 \\ & \hline \end{aligned}$		Vdc
$\begin{aligned} & \text { Collector-Base Cutoff Current } \\ & \mathrm{V}_{\mathrm{CB}}=40 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{CB}}=60 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \\ & \hline \end{aligned}$	$\mathrm{I}_{\text {CBO }}$		100	$\mu \mathrm{Adc}$
Emitter-Base Cutoff Current $\mathrm{V}_{\mathrm{EB}}=4.0 \mathrm{Vdc}$		$\mathrm{I}_{\text {EBO }}$		100	$\mu \mathrm{Adc}$
Collector-Emitter Cutoff Current $\mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{CE}}=60 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{CE}}=60 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \\ & \text { 2N3867, } \\ & \text { 2N3868, } \end{aligned}$	$\mathrm{I}_{\text {CEX }}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$

TO-5* 2N3867, 2N3868

TO-39 * (TP-205AD) 2N3867S, 2N3868S

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted) (CONT.)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERTICS ${ }^{(2)}$					
$\begin{aligned} & \text { Forward-Current Transfer Ratio } \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=3.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \\ & \text { 2N3867, S } \\ & \text { 2N3868, S } \\ & \text { 2N3867, S } \\ & \text { 2N3868, S } \\ & \text { 2N3867, S } \\ & \text { 2N3868, S } \\ & \text { 2N3867, S } \\ & \text { 2N3868, } \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 50 \\ & 35 \\ & 40 \\ & 30 \\ & 25 \\ & 20 \\ & 20 \\ & 20 \\ & 25 \\ & 17 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	
Collector-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=150 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=250 \mathrm{mAdc}$		$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$		$\begin{gathered} 0.5 \\ 0.75 \\ 1.5 \end{gathered}$	Vdc
Base-Emitter Saturation Voltage $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=150 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=250 \mathrm{mAdc} \end{aligned}$	$\begin{aligned} & \text { 2N3867, S } \\ & \text { 2N3868, S } \end{aligned}$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	$\begin{gathered} 0.9 \\ 0.85 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.4 \\ & 1.4 \\ & 2.0 \end{aligned}$	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{MHz}$				
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	3	12	$\mathrm{k} \Omega$	
Iutput Capacitance $\mathrm{V}_{\mathrm{EB}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		120	pF

(2) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803
Website: http: //www.microsemi.com

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Delay Time $\quad \mathrm{V}_{\mathrm{CC}}=-30 \mathrm{dc}, \mathrm{V}_{\mathrm{EB}}=0$	${ }^{t} \mathrm{~d}$		35	nS
Rise Time $\quad \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=150 \mathrm{mAdc}$	${ }^{\text {t }}$		65	
Storage Time $\quad \mathrm{V}_{\mathrm{CC}}=-30 \mathrm{dc}, \mathrm{V}_{\mathrm{EB}}=0$	${ }^{\text {t }}$		500	
Fall Time $\quad \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=150 \mathrm{mAdc}$	${ }^{\text {t }}$ f		100	nS
Turn-On Time $\mathrm{V}_{\mathrm{CC}}=30, \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=150 \mathrm{~mA}$	${ }^{\text {t }}$ on		100	nS
Turn-Off Time $\mathrm{V}_{\mathrm{CC}}=30, \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=150 \mathrm{~mA}$	${ }^{\text {toff }}$		600	nS

SAFE OPERATING AREA

DC Test

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1$ cycle, $\mathrm{t}=1.0 \mathrm{~s}$

Test 1

$\mathrm{V}_{\mathrm{CE}}=3.33 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}$

Test 2

$\mathrm{V}_{\mathrm{CE}}=40 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=160 \mathrm{mAdc} \quad 2 \mathrm{~N} 3867$,
$\mathrm{V}_{\mathrm{CE}}=60 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=80 \mathrm{mAdc} \quad 2 \mathrm{~N} 3868, \mathrm{~S}$

PACKAGE DIMENSIONS

Symbol	Dimensions				Note
	Inches		Millimeters		
	Min	Max	Min	Max	
CD	. 305	. 335	7.75	8.51	5, 6
CH	. 240	. 260	6.10	6.60	
HD	. 335	. 370	8.51	9.40	4, 5
LC	. 200 TP		5.08 TP		7
LD	. 016	. 019	0.41	0.48	8,9
LL	See note 8, 14				
LU	. 016	. 019	0.41	0.48	8,9
L_{1}		. 050		1.27	8,9
L_{2}	. 250		6.35		8,9
P	. 100		2.54		7
Q		. 030		0.76	5
TL	. 029	. 045	0.74	1.14	3,4
TW	. 028	. 034	0.71	0.86	3
R		. 010		0.25	10
α	$45^{\circ} \mathrm{TP}$		$45^{\circ} \mathrm{TP}$		7
1, 2, 10, 12, 13, 14					

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Beyond r (radius) maximum, TW shall be held for a minimum length of $.011(0.28 \mathrm{~mm})$.
4. Dimension TL measured from maximum HD.
5. Body contour optional within zone defined by HD, CD, and Q .
6. CD shall not vary more than .010 inch $(0.25 \mathrm{~mm})$ in zone P. This zone is controlled for automatic handling.
7. Leads at gauge plane $.054+.001-.000$ inch $(1.37+0.03-0.00 \mathrm{~mm})$ below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods or by gauging procedure.
8. Dimension LU applies between L_{1} and L_{2}. Dimension $L D$ applies between L_{2} and $L L$ minimum. Diameter is uncontrolled in and beyond LL minimum.
9. All three leads.
10. The collector shall be internally connected to the case.
11. Dimension r (radius) applies to both inside corners of tab.
12. In accordance with ASME Y14.5M, diameters are equivalent to ϕx symbology.
13. Lead $1=$ emitter, lead $2=$ base, lead $3=$ collector.
14. For non-S-suffix devices (TO-5), dimension $L L=1.5$ inches (38.10 mm) min. and 1.75 inches (44.45 mm) max. For Ssuffix types (TO-39), dimension $\mathrm{LL}=.5$ inch $(12.70 \mathrm{~mm}) \mathrm{min}$. and .750 inch (19.05 mm) max.

FIGURE 1. Physical dimensions (similar to TO-5, TO-39)

