mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

N-CHANNEL J-FET

Qualified per MIL-PRF-19500/385

Devices

2N4856	2N4857	2N4858	2N4859	2N4860	2N4861

JAN JANTX

Qualified Level

JA	NT	X۷
----	----	----

*See appendix A for package outline

ABSOLUTE MAXIMUM RATINGS ($T_c = +25^{\circ}C$ unless otherwise noted)				
Parameters / Test Conditions	Symbol	2N4856 2N4857 2N4858	2N4859 2N4860 2N4861	Unit
Gate-Source Voltage	V _{GS}	-40	-30	V
Drain-Source Voltage	V _{DS}	40	30	V
Drain-Gate Voltage	V _{DG}	40	30	V
Gate Current	I _G	5	0	mA
Power Dissipation				
$T_A = +25^0 C^{(1)}$	P _T	0.	36	W
$T_{\rm C} = +25^{\rm 0} {\rm C}^{(2)}$		1	.8	W
Operating Junction & Storage Temperature Range	T_{j}, T_{stg}	-65 to	+200	⁰ C
) Denote linearly 2.06 mW/ 0 C for T > 25 0 C				

(1) Derate linearly 2.06 mW/ 0 C for T_A > 25 0 C. (2) Derate linearly 10.3 mW/ 0 C for T_C > 25 0 C.

ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$ unless otherwise noted)

Parameters / Test Conditions		Symbol	Min.	Max.	Units
Gate-Source Breakdown Voltage					
$V_{DS} = 0$, $I_G = 1.0 \ \mu Adc$	2N4856, 2N4857, 2N4858	V _{(BR)GSS}	-40		Vdc
	2N4859, 2N4860, 2N4861		-30		
Gate-Source "Off" State Voltage					
$V_{DS} = 15 \text{ Vdc}, \text{ I}_{D} = 0.5 \eta \text{Adc}$	2N4856, 2N4859		-4.0	-10	
	2N4857, 2N4860	V _{GS(on)}	-2.0	-6.0	Vdc
	2N4858, 2N4861		-0.8	-4.0	
Gate Reverse Current					
$V_{DS} = 0, V_{GS} = -20 \text{ Vdc}$	2N4856, 2N4857, 2N4858	I _{GSS}		-0.25	ηA
$V_{DS} = 0, V_{GS} = -15 \text{ Vdc}$	2N4859, 2N4860, 2N4861			-0.25	
Drain Current		т		0.25	n A
V_{GS} = -10 Vds, V_{DS} = 15 Vdc		¹ D(off)		0.25	ηA

2N4856, 2N4857, 2N4858, 2N4859, 2N4860, 2N24861 JAN SERIES

Parameters / Test Cond	litions		Symbol	Min.	Max.	Units
Drain Current						
$V_{GS} = 0, V_{DS} = 15 V de$	c 2N4856	2N4856, 2N4859		50	175	
	2N4857	, 2N4860		20	100	mA
	2N4858	s, 2N4861		8.0	80	
Static Drain - Source "On" State Resistance						
$V_{GS} = 0$, $I_D = 1.0$ mAo	dc 2N4856	, 2N4859			25	
	2N4857	, 2N4860	r _{ds(on)}		40	Ω
	2N4858	, 2N4861			60	
Drain-Source "On" State	Voltage					
$V_{GS} = 0$, $I_D = 20$ mAd	lc 2N4856	, 2N4859			0.75	
$V_{GS} = 0$, $I_D = 10 \text{ mAd}$	lc 2N4857	, 2N4860	V _{DS(on)}		0.50	Vdc
$V_{GS} = 0$, $I_D = 5.0$ mAe	dc 2N4858	, 2N4861			0.50	
Small-Signal, Common-S	Source Reverse Transfe	er Capacitance				
$V_{GS} = -10$ Vdc, $V_{DS} = 0$, f = 1.0 MHz			C _{rss}		8.0	pF
$C_1 = 0.1 \mu F, \ L_1 = L_2 \ge 500 \ \mu H$						
Small-Signal, Common-S	Source Short-Circuit In	put Capacitance				
$V_{GS} = -10$ Vdc, $V_{DS} = 0$, f = 1.0 MHz			Ciss		18	pF
$C_1 = 0.1 \mu F, C_2 = 20.1 m$						
$FL_1 = L_2 \ge 500 \ \mu H$						
Turn-On Delay Time	2N4856, 2N4859				6	
	2N4857, 2N4860		^t d _{on}		6	ηs
	2N4858, 2N4861	See Figure 3			10	
Rise Time	2N4856, 2N4859				3	
	2N4857, 2N4860	of MIL-PRF-	r t		4	ηs
	2N4858, 2N4861	19500/385			10	
Turn-Off Delay Time	2N4856, 2N4859				25	
	2N4857, 2N4860		^t d _{off}		50	ηs
	2N4858, 2N4861				100	

ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$ unless otherwise noted) (con't)