

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PNP DUAL SILICON TRANSISTOR

Qualified per MIL-PRF-19500/496

Devices Qualified Level

2N5796 2N5795 2N5796U

JAN **JANTX JANTXV**

MAXIMUM RATINGS

Ratings	Symbol	Value		Units
Collector-Emitter Voltage	V_{CEO}	60		Vdc
Collector-Base Voltage	V_{CBO}	60		Vdc
Emitter-Base Voltage	V_{EBO}	5.0		Vdc
Collector Current	I_{C}	600		mAdc
		One ⁽¹⁾	Both ⁽²⁾	
		Section	Sections	
Total Power Dissipation @ $T_A = +25^{\circ}C$	P_{T}	0.5	0.6	W
Operating & Storage Junction Temperature Range	T _{J,} T _{stg}	-65 to +175		°C

- 1) Derate linearly 2.86 mW/ 0 C for $T_{A} \ge +25^{0}$ C 2) Derate linearly 3.43 mW/ 0 C for $T_{A} \ge +25^{0}$ C

MILPRF19500/496 for package outline

ELECTRICAL CHARACTERISTICS (T_A = 25^oC unless otherwise noted)

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS		•	*	
Collector-Emitter Breakdown Voltage	7.7	60		Vdc
$I_C = 10 \text{ mAdc}$	$V_{(BR)CEO}$	60		vac
Collector-Base Cutoff Current				
$V_{CB} = 50 \text{ Vdc}$	I_{CBO}		10	ηAdc
$V_{\rm CBO} = 60 \text{ Vdc}$			10	μAdc
Emitter-Base Cutoff Current				
$V_{EB} = 3.0 \text{ Vdc}$	I_{EBO}		100	ηAdc
$V_{EB} = 5.0 \text{ Vdc}$			10	μAdc

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

2N5795, 2N5796 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (1)					
Forward-Current Transfer Ratio					
$I_{\rm C} = 100 \; \mu {\rm Adc}, {\rm V}_{\rm CE} = 10 \; {\rm Vdc}$	2N5795		40		
$I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$			40		
$I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$			40		
$I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		h_{FE}	40 20 20	150	
$I_C = 300 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$					
$I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$					
$I_C = 100 \ \mu Adc, \ V_{CE} = 10 \ Vdc$	2N5796		75		
$I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	2N5796U		100		
$I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		h_{FE}	100 100 50	300	
$I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		FE			
$I_C = 300 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$					
$I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$			50		
Collector-Emitter Saturation Voltage					
$I_C = 150 \text{ mAde}, I_B = 15 \text{ mAde}$		V _{CE(sat)}		0.4	Vdc
$I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$				1.6	
Base-Emitter Saturation Voltage					
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$		V _{BE(sat)}		1.3	Vdc
$I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$				2.6	
DYNAMIC CHARACTERISTICS					
Magnitude of Small-Signal Forward Current Transfer Ratio		h _{fe}	2.0	10	
$I_C = 20 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}$		II _{fe}	2.0	10	
Output Capacitance		C_{obo}		8.0	pF
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ M}$	Hz	Cobo			
Input Capacitance		C_{ibo}		25	pF
$V_{EB} = 2.0 \text{ Vdc}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ M}$	IHz	C _{1bo}		23	Pi
SWITCHING CHARACTERISTICS					
Turn-On Time		ton		50	ηs
$V_{CC} = 30 \text{ Vdc}$; $I_C = 150 \text{ mAdc}$; $I_{B1} = 15 \text{ m}$.	Adc	OII		50	ılə
Turn-Off Time		toff		140	ηs
$V_{CC} = 30 \text{ Vdc}$; $I_C = 150 \text{ mAdc}$; $I_{B1} = I_{B2} = 10 Pulse Test: Pulse Width = 200 us. Puty Cycles$		011		110	ıμο

¹⁾ Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.