

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PNP Darlington Power Silicon Transistor

Qualified per MIL-PRF-19500/501

<u>Qualified Levels</u>: JAN, JANTX, and JANTXV

DESCRIPTION

This high speed PNP transistor is rated at 12 amps and is military qualified up to a JANTXV level. This TO-204AA isolated package features a 180 degree lead orientation.

TO-204AA (TO-3) Package

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N6051 and 2N6052
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/501
- RoHS compliant versions available (commercial grade only)

APPLICATIONS / BENEFITS

- Military, space and other high reliability applications
- High frequency response
- TO-204AA case with isolated terminals

MAXIMUM RATINGS @ $T_C = +25$ °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit	
Junction and Storage Temperatur	re	T_J and T_{STG}	-55 to +175	°C
Thermal Resistance Junction-to-C	Case	R _{eJC}	1.0	°C/W
Collector Current		Ic	-12	Α
Collector-Emitter Voltage	2N6051	V_{CEO}	-80	V
	2N6052		-100	
Collector-Base Voltage 2N6051		V_{CBO}	-80	V
	2N6052		-100	
Emitter-Base Voltage		V_{EBO}	-5	V
Total Power Dissipation	@ $T_C = +25 {}^{\circ}C^{(1)}$	P_T	150	W
	$@T_{C} = +100 {}^{\circ}C$		75	

<u>Notes</u>: 1. Derate linearly 1.0 W/ $^{\circ}$ C above T_C > +25 $^{\circ}$ C.

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Industry standard TO-204AA (TO-3), hermetically sealed, 0.040 inch diameter pins
- FINISH: Solder dipped tin-lead over nickel plated alloy 52 or RoHS compliant matte-tin plating. Solderable per MIL-STD-750 method 2026.
- POLARITY: PNP (see schematic)
- MOUNTING HARDWARE: Consult factory for optional insulator and sheet metal screws
- WEIGHT: Approximately 15 grams
- See package dimensions on last page.

PART NOMENCLATURE JAN 2N6051 (e3)**Reliability Level RoHS Compliance** JAN = JAN Level e3 = RoHS Compliant (available JANTX = JANTX Level on commercial grade only) JANTXV = JANTXV Level Blank = non-RoHS Compliant Blank = Commercial JEDEC type number (see Electrical Characteristics table)

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
Ι _Β	Base current: The value of the dc current into the base terminal.				
Ic	Collector current: The value of the dc current into the collector terminal.				
Ι _Ε	Emitter current: The value of the dc current into the emitter terminal.				
T_C	Case temperature: The temperature measured at a specified location on the case of a device.				
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.				
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.				
V _{cc}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.				
V _{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.				
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.				
V_{EB}	Emitter-base voltage: The dc voltage between the emitter and the base				
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.				

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted

Characteristics	Symbol	Min.	Max.	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage I _C = -100 mA	2N6051 2N6052	$V_{(BR)CEO}$	-80 -100		V
Collector-Emitter Cutoff Current V _{CE} = -40 V V _{CE} = -50 V	2N6051 2N6052	I _{CEO}		-1.0 -1.0	mA
Collector-Emitter Cutoff Current $V_{CE} = -80 \text{ V}, V_{BE} = 1.5 \text{ V}$ $V_{CE} = -100 \text{ V}, V_{BE} = 1.5 \text{ V}$	2N6051 2N6052	I _{CEX}		-0.01 -0.01	mA
Emitter-Base Cutoff Current V _{BE} = -5.0 V		I _{EBO}		-2.0	mA
ON CHARACTERISTICS					
Forward-Current Transfer Ratio $I_C = -1.0 \text{ A}, V_{CE} = 3.0 \text{ V}$ $I_C = -6.0 \text{ A}, V_{CE} = 3.0 \text{ V}$ $I_C = -12 \text{ A}, V_{CE} = 3.0 \text{ V}$		h _{FE}	1,000 1,000 150	18,000	
Collector-Emitter Saturation Voltage $I_C = -12 \text{ A}, I_B = -120 \text{ mA}$ $I_C = -6.0 \text{ A}, I_B = -24 \text{ mA}$		$V_{\text{CE}(\text{sat})}$		-3.0 -2.0	V
Base-Emitter Saturation Voltage $I_C = -12 \text{ A}, I_B = -120 \text{ mA}$		$V_{BE(sat)}$		-4.0	٧
Base-Emitter Voltage Non-saturated V _{CE} = -3.0 V, I _C = -6 A		V_{BE}		-2.8	V
DYNAMIC CHARACTERISTICS					
Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = -5 A$, $V_{CE} = -3.0 V$, $f = 1 kHz$		h _{fe}	1,000		
Magnitude of Common Emitter Small-Signal Sho Forward Current Transfer Ratio	hfe	10	250		

 $I_{C} = -5 \text{ A}, V_{CE} = -3.0 \text{ V}, f = 1 \text{ MHz}$

 $V_{CB} = 10 \text{ V}, I_{E} = 0, f = 100 \text{ kHz} \le f \le 1 \text{ MHz}$

Output Capacitance

|hfe|

 C_{obo}

10

250

300

рF

ELECTRICAL CHARACTERISTICS @ T_C = 25 °C unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

Turn-On Time $V_{CC} = -30 \text{ V}, I_C = -5 \text{ A}; I_{B1} = -20 \text{ mA}$	t _{on}	2.0	μS
Turn-Off Time $V_{CC} = -30 \text{ V}, I_C = -5 \text{ A}; I_{B1} = I_{B2} = -20 \text{ mA}$	t _{off}	10	μS

SAFE OPERATING AREA (See Figures 1 and 2 and MIL-STD-750, Test Method 3053)

DC Tests

 $T_C = +25 \, ^{\circ}C$, $+10 \, ^{\circ}C$, $-0 \, ^{\circ}C$, $t \ge 1$ second, 1 Cycle

Test 1

 $V_{CE} = -12.5 \text{ V}, I_{C} = -12 \text{ A}$

Test 2

 $V_{CE} = -30 \text{ V}, I_{C} = -5 \text{ A}$

Test 3

 $V_{CE} = -70 \text{ V}, I_{C} = -200 \text{ mA} (2N6051)$

 $V_{CE} = -90 \text{ V}, I_{C} = -155 \text{ mA} (2N6052)$

SAFE OPERATING AREA

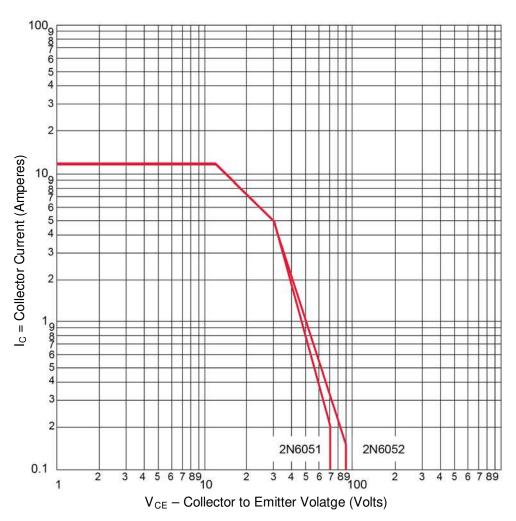


FIGURE 1

Maximum Safe Operating Area
(continuous dc)

SAFE OPERATING AREA (continued)

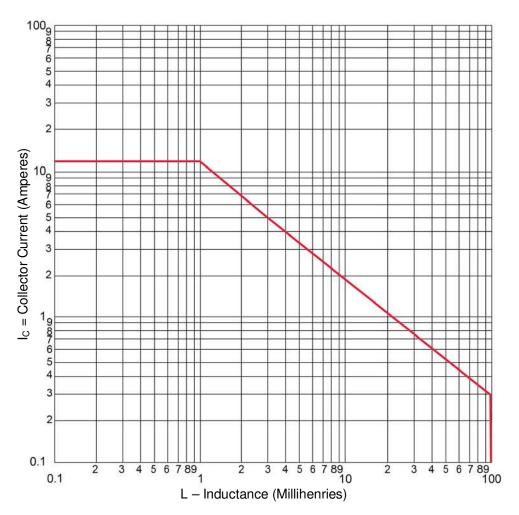
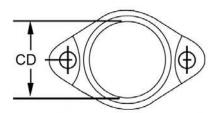
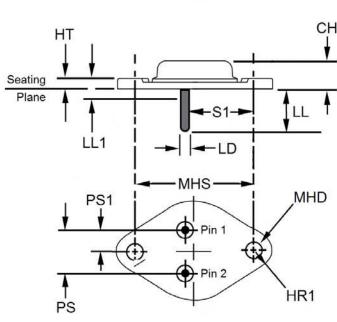




FIGURE 2
Safe Operating Area for Switching Between Saturation and Cutoff (unclamped inductive load).

PACKAGE DIMENSIONS


	Dimensions				
Ltr	Inches		Millim	Notes	
	Min	Max	Min	Max	
CD	-	0.875	-	22.23	3
CH	0.250	0.328	6.35	8.33	
HR	0.495	0.525	12.57	13.34	
HR1	0.131	0.188	3.33	4.78	6
HT	0.060	0.135	1.52	3.43	
LD	0.038	0.043	0.97	1.09	4, 5, 9
LL	0.312	0.500	7.92	12.70	4, 5, 9
LL1	-	0.050	1	1.27	5, 9
MHD	0.151	0.161	3.84	4.09	7
MHS	1.177	1.197	29.90	30.40	
PS	0.420	0.440	10.67	11.18	
PS1	0.205	0.225	5.21	5.72	5
S1	0.655	0.675	16.64	17.15	

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- 2. Millimeters are given for information only.
- 3. Body contour is optional within zone defined by CD.
- 4. These dimensions shall be measured at points .050 inch (1.27 mm) to .055 inch (1.40 mm) below seating plane. When gauge is not used, measurement shall be made at seating plane.
- 5. Both terminals.
- 6. At both ends.
- 7. Two holes.
- 8. The collector shall be electrically connected to the case.
- 9. LD applies between L1 and LL. Lead diameter shall not exceed twice LD within L1.
- 10. The seating plane of the header shall be flat within .001 inch (0.03 mm), concave to .004 inch (0.10 mm), convex inside a .930 inch (23.62 mm) diameter circle on the center of the header, and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm), convex overall.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

SCHEMATIC

