: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NPN POWER SILICON TRANSISTOR
 Qualified per MIL-PRF-19500/514

DEVICES

LEVELS
 2N6274 2N6277
 JAN
 JANTX JANTXV

ABSOLUTE MAXIMUM RATINGS ($\boldsymbol{T}_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameters / Test Condition	Symbol	2N6274	2N6277	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	100	150	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	120	180	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	6.0	6.0	Vdc
Base Current	I_{B}	20	20	Adc
Collector Current	I_{C}	50	50	Adc
$\begin{array}{ll}\text { Total Power Dissipation } & \text { @ } \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}^{(1)} \\ & \text { @ } \mathrm{T}_{\mathrm{C}}=+100^{\circ} \mathrm{C} \text { (2) }\end{array}$	P_{T}	$\begin{aligned} & 250 \\ & 143 \\ & \hline \end{aligned}$		W
Operating \& Storage Temperature Range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-65 to +200		${ }^{\circ} \mathrm{C}$

TO-3 (TO-204AE)

THERMAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Max	Unit
Thermal resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JJ}}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note: 1) Derate linearly $1.43 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ between $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=200^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERTICS ${ }^{(1)}$					
Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}$	$\begin{aligned} & \text { 2N6274 } \\ & \text { 2N6277 } \end{aligned}$	$\mathrm{V}_{(\mathrm{BR}) \text { CEO }}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$		Vdc
Collector-Emitter Cutoff Current $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=50 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{CE}}=75 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & \text { 2N6274 } \\ & \text { 2N6277 } \end{aligned}$	$\mathrm{I}_{\text {CEO }}$		$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Collector-Emitter Cutoff Current $\mathrm{V}_{\mathrm{CE}}=120 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{CE}}=180 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{Vdc}$	2N6274 2N6277	$\mathrm{I}_{\text {CEX }}$		$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Collector-Base Cutoff Current $\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=120 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{CB}}=180 \mathrm{Vdc} \\ & \hline \end{aligned}$	2N6274 2N6277	$\mathrm{I}_{\text {CBO }}$		$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Emitter-Base Cutoff Current $\mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{Vdc}$		$\mathrm{I}_{\text {EBO }}$		100	$\mu \mathrm{Adc}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} C\right.$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS ${ }^{(2)}$				
Forward-Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=4.0 \mathrm{Vdc}$ $\mathrm{I}_{\mathrm{C}}=20 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=4.0 \mathrm{Vdc}$ $\mathrm{I}_{\mathrm{C}}=50 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=4.0 \mathrm{Vdc}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 50 \\ & 30 \\ & 10 \end{aligned}$	120	
Collector-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=20 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=2.0 \mathrm{Adc}$ $\mathrm{I}_{\mathrm{C}}=50 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{Adc}$	$\mathrm{V}_{\text {CE(sat) }}$		$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	Vdc
Base-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=20 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=2.0 \mathrm{Adc}$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$		1.8	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-Circuit, Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=10 \mathrm{MHz}$	$\left\|\mathrm{h}_{\mathrm{fe}}\right\|$			
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	3.0	12		

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time	t_{on}		0.5	$\mu \mathrm{~s}$
$\mathrm{~V}_{\mathrm{CC}}=80 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=20 \mathrm{Adc} ; \mathrm{I}_{\mathrm{B}}=2.0 \mathrm{Adc}$				
Turn-Off Time $\mathrm{V}_{\mathrm{CC}}=80 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=20 \mathrm{Adc} ; \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=2.0 \mathrm{Adc}$	$\mathrm{t}_{\mathrm{off}}$		1.05	$\mu \mathrm{~S}$

SAFE OPERATING AREA

DC Tests

$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, 1$ Cycle, $\mathrm{t}=1.0 \mathrm{~s}$

Test 1

$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{Adc}$
All Types

Test 2

$\mathrm{V}_{\mathrm{CE}}=8.6 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=165 \mathrm{mAdc}$
All Types
Test 3
$\mathrm{V}_{\mathrm{CE}}=80 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=29 \mathrm{mAdc}$
2N6274
Test 4
$\mathrm{V}_{\mathrm{CE}}=120 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=110 \mathrm{mAdc}$ 2N6277
(2) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

PACKAGE DIMENSIONS

Ltr	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
CD		.875		22.22	3
CH	.250	.328	6.35	8.33	
HR	.495	.525	12.57	13.34	
HR1	.131	.188	3.33	4.78	6
HT	.060	.135	1.52	3.43	
LD	.057	.063	1.45	1.60	5,9
LL	.312	.500	7.92	12.70	$4,5,9$
L $_{1}$.050		1.27	5,9
MHD $^{2 H}$.151	.161	3.84	4.09	7
MHS $^{2 H}$	1.177	1.197	29.90	30.40	
PS	.420	.440	10.67	11.18	
PS $_{1}$.205	.225	5.21	5.72	5
S $_{1}$.655	.675	16.64	17.15	

NOTE:

1. Dimensions are in inches.

* 2. Millimeters are given for general information only.

3. Body contour is optional within zone defined by CD.
4. These dimensions shall be measured at points .050 inch $(1.27 \mathrm{~mm})$ to .055 inch $(1.40 \mathrm{~mm})$ below seating plane. When gauge is not used, measurement shall be made at seating plane.
5. Both terminals.
6. At both ends.
7. Two holes.
8. Terminal 1 is the emitter, terminal 2 is base. The collector shall be electrically connected to the case.

* 9. LD applies between L1 and LL. Lead diameter shall not exceed twice LD within L1.
* 10. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

11. The seating plane of the header shall be flat within .001 inch $(0.03 \mathrm{~mm})$ concave to .004 inch $(0.10 \mathrm{~mm})$ convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.

* FIGURE 1. Physical dimensions (TO-3)

