

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/525

Devices Qualified Level

2N6546 2N6547

JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	2N6546	2N6547	Units
Collector-Emitter Voltage	V_{CEO}	300	400	Vdc
Collector-Base Voltage	V _{CEX}	600	850	Vdc
Emitter-Base Voltage	V_{EBO}	8		Vdc
Base Current	I_{B}	10		Adc
Collector Current	I_{C}	15		Adc
Total Power Dissipation @ $T_C = +25^{\circ}C^{(1)}$	D	175 100		W
@ $T_C = +100^0 C^{(1)}$	P_{T}			W
Operating & Storage Temperature Range	Top, Tstg	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.0	⁰ C/W

¹⁾ Between $T_C = +25^{\circ}C$ and $T_C = +200^{\circ}C$, linear derating factor (average) = 1.0 W/ $^{\circ}C$

*See Appendix A for Package Outline

ELECTRICAL CHARACTERISTICS

Characteristi	cs	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					_
Collector-Emitter Breakdown Voltage					
$I_C = 100 \text{ mAdc}$	2N6546	$V_{(BR)CEO}$	300		Vdc
	2N6547		400		
Collector-Emitter Cutoff Current					
$V_{CE} = 600 \text{ Vdc}; V_{BE} = 1.5 \text{ Vdc}$	2N6546	I_{CEX}		1.0	mAdc
$V_{CE} = 850 \text{ Vdc}; V_{BE} = 1.5 \text{ Vdc}$	2N6547			1.0	
Emitter-Base Cutoff Current		т			mAdc
$V_{EB} = 8 \text{ Vdc}$		I_{EBO}		1.0	mAdc

6 Lake Street, Lawrence, MA 01841

120101

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

Page 1 of 2

2N6546, 2N6547 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)	•			
Forward-Current Transfer Ratio				
$I_C = 1 \text{ Adc}; \ V_{CE} = 2 \text{ Vdc}$,	15		
$I_C = 5 \text{ Adc}; \ V_{CE} = 2 \text{ Vdc}$	$h_{ m FE}$	12	60	
$I_C = 10 \text{ Adc}; \ V_{CE} = 2 \text{ Vdc}$		6		
Base-Emitter Saturated Voltage	V			Vdc
$I_B = 2.0 \text{ Adc}; I_C = 10 \text{ Adc}$	V _{BE(sat)}		1.6	
Collector-Emitter Saturated Voltage				
$I_B = 2.0 \text{ Adc}; I_C = 10 \text{ Adc}$	V _{CE(sat)}		1.5	Vdc
$I_B = 3.0 \text{ Adc}; I_C = 15 \text{ Adc}$			5.0	
DYNAMIC CHARACTERISTICS				
Magnitude of Common-Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}			
$I_C = 0.5 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1 \text{ MHz}$		6.0	30	
Output Capacitance	C			nE
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 0.1 \text{ MHz} \le f \le 1.0 \text{ MHz}$	C_{obo}		500	pF
SWITCHING CHARACTERISTICS				
Turn-On Time	t on		1.0	Ша
$V_{CC} = 250 \text{ Vdc}$; $I_C = 10 \text{ Adc}$; $I_{B1} = I_{B2} = 2 \text{ Adc}$	On		1.0	μs
Turn-Off Time	^t off		4.7	Ше
$V_{CC} = 250 \text{ Vdc}; I_C = 10 \text{ Adc}; I_{B1} = I_{B2} = 2 \text{ Adc}$	OH		4.7	μs

SAFE OPERATING AREA

DC Tests

 $T_C = +25^{\circ}C$; $t_p = 1$ s; 1 cycle (See Figure 3 of MIL-PRF-19500/525)

Test 1

 $V_{CE} = 11.7 \text{ Vdc}$; $I_C = 15 \text{ Adc}$

Test 2

 $V_{CE} = 20 \text{ Vdc}; I_{C} = 8.75 \text{ Adc}$

Test 3

 $V_{CE} = 250 \text{ Vdc}; I_C = 45 \text{ mAdc}$ 2N6546 $V_{CE} = 350 \text{ Vdc}; I_C = 30 \text{ mAdc}$ 2N6547

Unclamped Inductive IOAD

 $T_C = +25^{\circ}C$; duty cycle $\leq 10\%$; $R_S = 0.1 \Omega$; $t_r = t_f \leq 500 \eta s$ (See Figure 4 of MIL-PRF-19500/525)

Test 1

Tp = 5 ms; (vary to obtain I_C); R_{BB1} = 15 Ω ; $V_{BB}1$ = 38.5 Vdc; R_{BB2} = 50 Ω ;

 V_{BB2} = -4 Vdc; V_{CC} = 20 Vdc; IC = 15 Adc; L = 10 μH

Test 2

Tp = 5 ms; (vary to obtain I_C); $R_{BB1} = 15 \Omega$; $V_{BB}1 = 38.5 \text{ Vdc}$; $R_{BB2} = 50 \Omega$;

 $V_{BB2} = -4 \text{ Vdc}; V_{CC} = 20 \text{ Vdc}; IC = 100 \text{ mAdc}; L = 1 \text{ mH}$

Clamped Inductive Load

 $T_A = +25^{\circ}C$; duty cycle $\leq 5\%$; Tp = 1.5 ms; (vary to obtain I_C); $V_{CC} = 20$ Vdc; $I_C = 8$ Adc; $L = 180 \mu H$

(See Figure 5 of MIL-PRF-19500/525)

Clamped Voltage = 350 Vdc 2N6546 Clamped Voltage = 450 Vdc 2N6547

3.) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.