

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

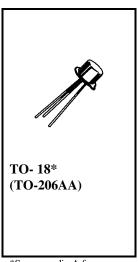
NPN LOW POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/253

Devices Qualified Level

2N930

JAN JANTX JANTXV


MAXIMUM RATINGS

Ratings	Symbol	Value	Units
Collector-Emitter Voltage	V_{CEO}	45	Vdc
Collector-Base Voltage	V_{CBO}	60	Vdc
Emitter-Base Voltage	V_{EBO}	6.0	Vdc
Collector Current	I_{C}	30	mAdc
Total Power Dissipation @ $T_A = +25^0C^{(1)}$ @ $T_C = +25^0C^{(2)}$	P_{T}	300 600	mW
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-55 to +200	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	97	⁰ C/W

¹⁾ Derate linearly 2.0 mW/ $^{\circ}$ C above $T_A = +25^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS ($T_C = +25^{\circ}C$ unless otherwise noted)

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage	V			Vdc
$I_C = 10 \text{ mAdc}$	$V_{(BR)CEO}$	45		vac
Collector-Base Cutoff Current				4. 1.
$V_{CB} = 60 \text{ Vdc}$	I_{CBO}		10	μAdc ηAdc
$V_{CB} = 45 \text{ Vdc}$			10	HAde
Emitter-Base Cutoff Current				۸
$V_{EB} = 6.0 \text{ Vdc}$	$I_{ m EBO}$		10	μAdc ηAdc
$V_{EB} = 5.0 \text{ Vdc}$			5.0	HAde
Collector-Emitter Cutoff Current	т.			A 1
$V_{CE} = 45 \text{ Vdc}$	I_{CES}		2.0	ηAdc
Collector-Base Cutoff Current	т			m A J.
$V_{CE} = 5.0 \text{ Vdc}$	I_{CEO}		2.0	ηAdc

²⁾ Derate linearly 4.0 mW/ $^{\circ}$ C above $T_{C} = +25^{\circ}$ C

2N930, JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)				
Forward-Current Transfer Ratio				
$I_{\rm C} = 10 \mu{\rm Adc}, V_{\rm CE} = 5.0 {\rm Vdc}$	1.	100 150	300	
$I_C = 500 \mu\text{Adc}, V_{CE} = 5.0 \text{Vdc}$	$ ho_{ m FE}$			
$I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$			600	
Collector-Emitter Saturation Voltage	3.7		1.0	Vdc
$I_C = 10 \text{ mAdc}, I_B = 0.5 \text{ mAdc}$	V _{CE(sat)}			
Base-Emitter Saturation Voltage	V	0.6		Vdc
$I_C = 10 \text{ mAdc}, I_B = 0.5 \text{ mAdc}$	$V_{BE(sat)}$		1.0	
DYNAMIC CHARACTERISTICS				
Magnitude of Small-Signal Short-Circuit				
Forward Current Transfer Ratio	$ h_{fe} $			
$I_C = 500 \mu\text{Adc}, V_{CE} = 5.0 \text{Vdc}, f = 30 \text{MHz}$. 10.	1.5	6.0	
Small-Signal Short-Circuit Forward Current Transfer Ratio	h			
$I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$	h_{fe}	150	600	
Small-Signal Short-Circuit Input Impedance	h	25	32	Ω
$V_{CB} = 5.0 \text{ Vdc}, I_{E} = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz}$	h_{ib}			
Small-Signal Short-Circuit Output Admittance	h		1.0	μΩ
$V_{CB} = 5.0 \text{ Vdc}, I_E = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz}$	h_{ob}			
Output Capacitance	C _{obo}			nE
$V_{CB} = 5.0 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$			8.0	pF
Noise Figure				
$V_{CE} = 5 \text{ Vdc}$; $I_C = 10 \mu \text{Adc}$; $R_g = 10 \text{k}\Omega$	NF			
Test 1: $f = 100 \text{ Hz}$			5	dB
Test 2: $f = 1.0 \text{ kHz}$			3	
Test 3: $f = 10 \text{ kHz}$			3	

⁽³⁾ Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.