: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low Noise Zener Diode Series

1N5518B-1 thru 1N5546B-1

A passion for performance.

Features

- 1N5518-1 THRU 1N5546B-1 Available in JAN, JANTX and JANTXV PER MIL-PRF-19500/437
- Low Reverse Leakage Characteristics
- Low Noise Cheracteristics
- Double Plug Construction
- Metallurgically Bonded
- Also available in DO-213 MELF style package.

Maximum Ratings

Junction and Storage Temperature: $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
DC Power Dissipation: $500 \mathrm{~mW} @+50^{\circ} \mathrm{C}$
Power Derating: $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+50^{\circ} \mathrm{C}$
Forward Voltage @ 200mA: 1.1 volts maximum
Electrical Specifications @ +25 ${ }^{\circ} \mathrm{C}$ (Unless Otherwise Specified)

JEDEC TYPE Number (Note1)	Normal Zener Voltage $\mathrm{V}_{\mathrm{z}} @ \mathrm{I}_{\mathrm{ZT}}$ Volts		Maximum Zener Impedance B-C-D Suffix $\mathrm{Z}_{\mathrm{ZT}} @ \mathrm{I}_{\mathrm{ZT}}$ Ohms	Maximum Reverse Leakage Current			B-C-D Suffix Maximum DC Zener Current \qquad mAdc	B-C-D Suff Maximum Noise Density $@_{Z}=250 \mu \mathrm{~A} \mathrm{~N}_{\mathrm{D}}$ $\mu \mathrm{V} / \sqrt{\mathrm{Hz}}$	Regulation Factor ΔV_{Z} (Note 2) Volts	Low V_{Z} Current $I_{Z L}$ mAdc
				I_{R}	$\mathrm{V}_{\mathrm{R}}=$ Volts					
				μ Adc	 A- Suffix	B-C-D- Suffix				
1N5518B 1N5519B 1N5520B 1N5521B 1N5522B	$\begin{aligned} & 3.3 \\ & 3.6 \\ & 3.9 \\ & 4.3 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 26 \\ & 24 \\ & 22 \\ & 18 \\ & 22 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \\ & 1.0 \\ & 3.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 0.90 \\ 0.90 \\ 0.90 \\ 1.0 \\ 1.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 115 \\ & 105 \\ & 98 \\ & 88 \\ & 81 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \\ & 0.85 \\ & 0.75 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \\ & 1.0 \end{aligned}$
1N5523B 1N5524B 1N5525B 1N5526B 1N5527B	$\begin{aligned} & 5.1 \\ & 5.6 \\ & 6.2 \\ & 6.8 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 26 \\ & 30 \\ & 30 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 1.0 \\ & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & 5.0 \\ & 6.2 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 75 \\ & 68 \\ & 61 \\ & 56 \\ & 51 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.30 \\ & 0.20 \\ & 0.10 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$
1N5528B 1N5529B 1N5530B 1N5531B 1N5532B	$\begin{gathered} 8.2 \\ 9.1 \\ 10.0 \\ 11.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \\ & 60 \\ & 80 \\ & 90 \end{aligned}$	$\begin{gathered} 0.5 \\ 0.1 \\ 0.05 \\ 0.05 \\ 0.05 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 7.0 \\ & 8.0 \\ & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.2 \\ & 9.1 \\ & 9.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 46 \\ & 42 \\ & 38 \\ & 35 \\ & 32 \end{aligned}$	$\begin{gathered} 4.0 \\ 4.0 \\ 4.0 \\ 5.0 \\ 10 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.10 \\ & 0.20 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$
1N5533B 1N5534B 1N5535B 1N5536B 1N5537B	$\begin{aligned} & 13.0 \\ & 14.0 \\ & 15.0 \\ & 16.0 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 90 \\ 100 \\ 100 \\ 100 \\ 100 \end{gathered}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.5 \\ & 12.5 \\ & 13.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 11.7 \\ & 12.6 \\ & 13.5 \\ & 14.4 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 29 \\ & 27 \\ & 25 \\ & 24 \\ & 22 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.20 \\ & 0.20 \\ & 0.20 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$
1N5538B 1N5539B 1N5540B 1N5541B 1N5542B	$\begin{aligned} & 18.0 \\ & 19.0 \\ & 20.0 \\ & 22.0 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 16.0 \\ & 17.0 \\ & 18.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 16.2 \\ & 17.1 \\ & 18.0 \\ & 19.8 \\ & 21.6 \end{aligned}$	$\begin{aligned} & 21 \\ & 20 \\ & 19 \\ & 17 \\ & 16 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.20 \\ & 0.20 \\ & 0.25 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$
1N5543B 1N5544B 1N5545B 1N5546B	$\begin{aligned} & 25.0 \\ & 28.0 \\ & 30.0 \\ & 33.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 23.0 \\ & 24.0 \\ & 28.0 \end{aligned}$	$\begin{aligned} & 22.4 \\ & 25.2 \\ & 27.0 \\ & 29.7 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.40 \\ & 0.45 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$

NOTE1: No Suffix type numbers are $\pm 20 \%$ with guaranteed limits for only $V Z, I R$, and $V F$. Units with " A " suffix are $\pm 10 \%$ with guaranteed limits for V_{Z}, I_{R}, and V_{F}. Units with guaranteed limits for all six parameters are indicated by a " B " suffix for $\pm 5.0 \%$ units, " C " suffix for $\pm 2.0 \%$ and " D " suffix for $\pm 1.0 \%$.

NOTE 2: Delta V_{Z} is the maximum difference between $\mathrm{V}_{\mathrm{Z}} @ \mathrm{I}_{\mathrm{ZT}}$ and $\mathrm{V}_{\mathrm{Z}} @ \mathrm{I}_{\mathrm{ZL}}$ measured with the device junction in thermal equilibrium.

LEADED DESIGN DATA

CASE: Hermetically sealed, DO - 35
LEAD MATERIAL: Copper clad steel
LEAD FINISH: Tin / Lead
THERMAL RESISTANCE: (R ${ }_{\Theta J E C}$): $250^{\circ} \mathrm{C} / \mathrm{W}$ maximum at $\mathrm{L}=0.375$ in
THERMAL IMPEDANCE: $\left(Z_{\Theta J X}\right): 35^{\circ} \mathrm{C} / \mathrm{W}$ maximum
POLARITY: Diode to be operated with the banded (cathode) end positive.
MOUNTING POSITION: Any
Graphs

ZENER IMPEDANCE VS. OPERATING CURRENT

Aeroflex / Metelics, Inc.

ISO 9001: 2008 certified companies

975 Stewart Drive,
Sunnyvale, CA 94085
Tel: (408) 737-8181
Fax: (408) 733-7645
Sales: 888-641-SEMI (7364)
Hi-Rel Components
9 Hampshire Street,
Lawrence, MA 01840
Tel: (603) 641-3800
Fax: (978) 683-3264
www.aeroflex.com/metelicsHRC
www.aeroflex.com/metelics

54 Grenier Field Road, Londonderry, NH 03053
Tel: (603) 641-3800
Fax: (603)-641-3500

Aeroflex / Metelics, Inc. reserves the right to make changes to any products and services herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused.

Copyright 2009 Aeroflex / Metelics. All rights reserved.

