

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

VOIDLESS HERMETICALLY SEALED STANDARD RECOVERY GLASS RECTIFIERS

Qualified to MIL-PRF-19500/420

<u>Qualified Levels:</u> JAN, JANTX, JANTXV and JANS

DESCRIPTION

This "standard recovery" rectifier diode series is military qualified and is ideal for high-reliability applications where a failure cannot be tolerated. These industry-recognized 5.0 amp rated rectifiers for working peak reverse voltages from 200 to 1000 volts are hermetically sealed with voidless-glass construction using an internal "Category 1" metallurgical bond. These devices are also available in surface mount MELF package configurations. Microsemi also offers numerous other rectifier products to meet higher and lower current ratings with various recovery time speed requirements including fast and ultrafast device types in both throughhole and surface mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 1N5550 thru 1N5554 series.
- Voidless hermetically sealed glass package.
- Extremely robust construction.
- Quadruple-layer passivation.
- Internal "Category 1" metallurgical bonds.
- JAN, JANTX, JANTXV and JANS qualified versions available per MIL-PRF-19500/420.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Standard recovery 5 amp 200 to 1000 volts rectifier series.
- Military and other high-reliability applications.
- General rectifier applications including bridges, half-bridges, catch diodes, etc.
- High forward surge current capability.
- Low thermal resistance.
- Controlled avalanche with peak reverse power capability.
- Extremely robust construction.
- Inherently radiation hard as described in Microsemi "MicroNote 050".

MAXIMUM RATINGS @ T_A = 25 °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit	
Junction and Storage Temperature		T_J and T_{STG}	-65 to +175	٥°
Thermal Resistance Junction-to-Lead (1)		$R_{\Theta JL}$	22	°C/W
Thermal Impedance @ 10 ms heating time		$Z_{\Theta JX}$	1.5	°C/W
Maximum Forward Surge Current (8.3 ms half sine)		I _{FSM}	100	Α
Average Rectified Forward Current (1)	$@ T_L = 30 ^{\circ}C$	I _{O(L)}	5	Α
Average Rectified Forward Current (3)	@ $T_A = 55$ °C	I _{O2} (2)	3	Α
	@ $T_A = 100$ °C	I _{O3} (4)	2	Α
Working Peak Reverse Voltage	1N5550	V_{RWM}	200	V
	1N5551		400	
	1N5552		600	
	1N5553		800	
	1N5554		1000	
Solder Temperature @ 10 s		T_SP	260	°C

See notes on next page.

"B" Package

Also available in:

"B" SQ-MELF (D-5B) Package (surface mount)

1N5550US - 1N5554US

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

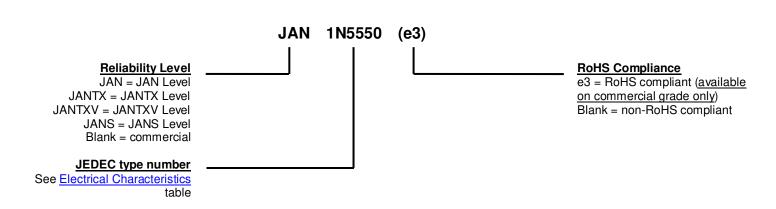
MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MAXIMUM RATINGS


Notes: 1. At .375 inch (9.52 mm) lead length from body.

- 2. Derate linearly at 22.2 mA/°C from +55 °C to +100 °C.
- These I_O ratings are for a thermally (PC boards or other) mounting methods where the lead or end-cap temperatures cannot be maintained and where thermal resistance from mounting point to ambient is still sufficiently controlled where T_{J(MAX)} does not exceed 175 °C. This equates to R_{θJX} ≤ 47 °C/W.
- 4. Derate linearly at 26.7 mA/°C above $T_A = +100$ °C to +175 °C ambient.

MECHANICAL and PACKAGING

- CASE: Hermetically sealed voidless hard glass with tungsten slugs.
- TERMINALS: Axial-leads are tin/lead (Sn/Pb) over copper. RoHS compliant matte-tin is available for commercial only.
- MARKING: Body paint and part number.
- POLARITY: Cathode band.
- TAPE & REEL option: Standard per EIA-296. Consult factory for quantities.
- WEIGHT: 750 milligrams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS			
Symbol	Definition		
V_{BR}	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.		
V _{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range excluding all transient voltages (ref JESD282-B).		
Io	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.		
V _F	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.		
I _R	Maximum Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.		
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.		

ELECTRICAL CHARACTERISTICS @ T_A = 25 °C unless otherwise noted.

TYPE	MINIMUM BREAKDOWN VOLTAGE V _{BR}	FORWARD VOLTAGE V _F @ I _F = 9 A (pk)		MAXIMUM REVERSE CURRENT I _R @ V _{RWM}	REVERSE RECOVERY t _{rr}
	V BR I _R @ 50 μA Volts	MIN. Volts	MAX. Volts	μ A	(Note 1) μs
1N5550	220	0.6 V (pk)	1.2 V (pk)	1.0	2.0
1N5551	440	0.6 V (pk)	1.2 V (pk)	1.0	2.0
1N5552	660	0.6 V (pk)	1.2 V (pk)	1.0	2.0
1N5553	880	0.6 V (pk)	1.3 V (pk)	1.0	2.0
1N5554	1100	0.6 V (pk)	1.3 V (pk)	1.0	2.0

NOTE 1: $I_F=0.5~A,\ I_{RM}=1.0~A,\ I_{R(REC)}=.250~A.$

GRAPHS

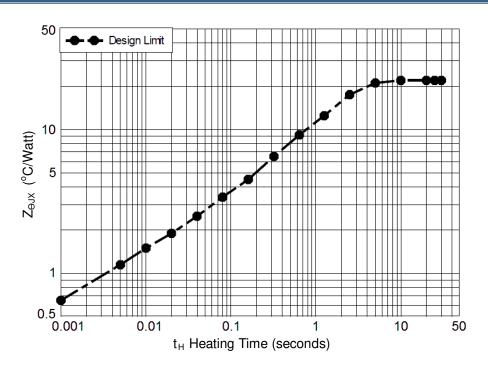
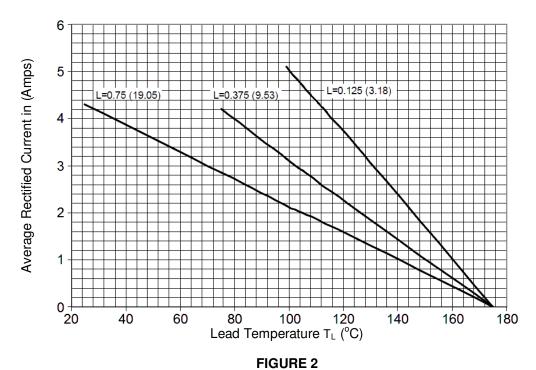



FIGURE 1

Maximum Thermal Impedance

Maximum Current vs. Lead Temperature

NOTES: 1. Dimensions are in inches.

2. Metric equivalents (to the nearest .01 mm) are given for general information only and are based upon 1 inch = 25.4 mm.

GRAPHS (continued)

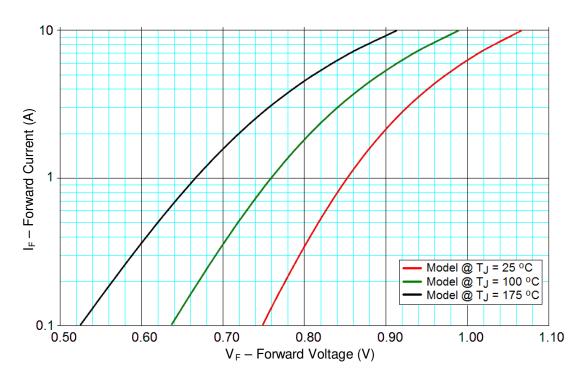
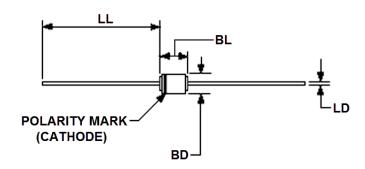



FIGURE 3
Typical Forward Voltage vs. Forward Current

PACKAGE DIMENSIONS

	Dimensions				
Ltr	Inch		Millimeters		Notes
	Min	Max	Min	Max	
BD	0.115	0.180	2.92	4.57	3, 4
BL	0.130	0.300	3.30	7.62	4
LD	0.036	0.042	0.92	1.07	
LL	0.900	1.300	22.86	33.02	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeter equivalents are given for general information only.
- 3. The BL dimension shall include the entire body including slugs and sections of the lead over which the diameter is uncontrolled. This uncontrolled area is defined as the zone between the edge of the diode body and extending .050 inch (1.27 mm) onto the leads.
- 4. Dimension BD shall be measured at the largest diameter.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.