

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









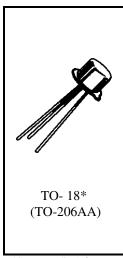


### NPN SILICON LOW POWER TRANSISTOR

Qualified per MIL-PRF-19500/313

Devices Qualified Level

2N2432 2N2432A JAN JANTX JANTXV


**MAXIMUM RATINGS** 

| Ratings                                                                           | Symbol    | 2N2432      | 2N2432A | Unit     |
|-----------------------------------------------------------------------------------|-----------|-------------|---------|----------|
| Collector-Emitter Voltage                                                         | $V_{CEO}$ | 30          | 45      | Vdc      |
| Collector-Base Voltage                                                            | $V_{CBO}$ | 30          | 45      | Vdc      |
| Emitter-Collector Voltage                                                         | $V_{ECO}$ | 15          | 18      | Vdc      |
| Collector Current                                                                 | $I_{C}$   | 100         |         | mAdc     |
| Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)}$ @ $T_C = +25^{\circ}C^{(2)}$ | D         | 300         |         | mW       |
| @ $T_C = +25^{\circ}C^{(2)}$                                                      | $P_{T}$   | 6           | mW      |          |
| Operating & Storage Junction Temp. Range                                          | $T_{stg}$ | -65 to +200 |         | $^{0}C$  |
| Operating & Storage Junction Temp. Range                                          | $T_{J}$   | -65 to +175 |         | $^{0}$ C |

#### THERMAL CHARACTERISTICS

| Characteristics                      | Symbol         | Max. | Unit               |
|--------------------------------------|----------------|------|--------------------|
| Thermal Resistance, Junction-to-Case | $R_{	heta JC}$ | 0.25 | mW/ <sup>0</sup> C |

<sup>1)</sup> Derate linearly 2.0 mW/ $^{\circ}$ C above T<sub>A</sub> > +25 $^{\circ}$ C



\*See appendix A for package outline

## **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25<sup>0</sup>C unless otherwise noted)

| Characteristi                       | ics     | Symbol        | Min. | Max. | Unit |
|-------------------------------------|---------|---------------|------|------|------|
| OFF CHARACTERISTICS                 |         |               |      |      |      |
| Emitter-Collector Breakdown Voltage |         |               |      |      |      |
| $I_E = 100 \mu\text{Adc}, I_B = 0$  | 2N2432  | 37            | 15   |      | Vdc  |
|                                     | 2N2432A | $V_{(BR)ECO}$ | 18   |      | vac  |
| $I_E = 10 \text{ mAdc}, I_B = 0$    | Both    |               | 10   |      |      |
| Collector-Emitter Breakdown Current |         |               |      |      |      |
| $I_C = 10 \text{ mAdc}$             | 2N2432  | $V_{(BR)CEO}$ | 30   |      | Vdc  |
|                                     | 2N2432A |               | 45   |      |      |
| Collector-Emitter Cutoff Current    |         |               |      |      |      |
| $V_{CB} = 25 \text{ Vdc}$           | 2N2432  | $I_{CES}$     |      | 10   | ηAdc |
| $V_{CB} = 40 \text{ Vdc}$           | 2N2432A |               |      | 10   |      |

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

<sup>2)</sup> Derate linearly 4.0 mW/ $^{\circ}$ C above  $T_{C} > +25 ^{\circ}$ C

#### **2N2432, 2N2432A JAN SERIES**

**ELECTRICAL CHARACTERISTICS (con't)** 

| Characteristi                                                    | cs            | Symbol               | Min. | Max. | Unit     |
|------------------------------------------------------------------|---------------|----------------------|------|------|----------|
| OFF CHARACTERISTICS (con't)                                      |               |                      |      |      |          |
| Collector-Emitter Cutoff Current                                 |               |                      |      |      |          |
| $V_{CB} = 30 \text{ Vdc}$                                        | 2N2432        |                      |      | 100  | μAdc     |
| $V_{CB} = 25 \text{ Vdc}$                                        | 2N2432        | $I_{CBO}$            |      | 10   | ηAdc     |
| $V_{CB} = 40 \text{ Vdc}$                                        | 2N2432A       |                      |      | 100  | μAdc     |
| $V_{CB} = 45 \text{ Vdc}$                                        | 2N2432A       |                      |      | 10   | ηAdc     |
| Emitter-Collector Cutoff Current                                 |               | т                    |      | 2.0  | A 1      |
| $V_{EC} = 15 \text{ Vdc}, V_{BC} = 0 \text{ Vdc}$                |               | $I_{ECS}$            |      | 2.0  | ηAdc     |
| Emitter-Base Cutoff Current                                      |               | т                    |      | 2.0  | m A .l.  |
| $V_{EB} = 15 \text{ Vdc}$                                        |               | $I_{EBO}$            |      | 2.0  | ηAdc     |
| ON CHARACTERISTICS (1)                                           |               |                      |      |      |          |
| Forward-Current Transfer Ratio                                   |               |                      |      |      |          |
| $I_C = 10 \mu\text{Adc},  V_{CE} = 5.0 \text{Vdc}$               |               | $h_{\mathrm{FE}}$    | 30   |      |          |
| $I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$               |               |                      | 80   | 400  |          |
| Forward-Current Transfer Ratio (Inverted                         | l Connection) |                      |      |      |          |
| $I_C = 0.2 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$               | 2N2432        | h <sub>FE(inv)</sub> | 2.0  |      |          |
|                                                                  | 2N2432A       |                      | 3.0  |      |          |
| Collector-Emitter Saturation Voltage                             |               | V <sub>CE(sat)</sub> |      | 0.15 | mVdc     |
| $I_C = 10 \text{ Vdc}, I_B = 0.5 \text{ mAdc}$                   |               | ▼ CE(sat)            |      | 0.13 | III v uc |
| Emitter-Collector Offset Voltage                                 |               |                      |      |      |          |
| $I_E = 0 \text{ mAdc}, I_B = 200 \mu\text{Adc}$                  | 2N2432        |                      |      | 0.5  |          |
|                                                                  | 2N2432A       | V <sub>EC(ofs)</sub> |      | 0.4  | mVdc     |
| $I_E = 0 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$                   | 2N2432        |                      |      | 0.1  |          |
|                                                                  | 2N2432A       |                      |      | 0.7  |          |
| DYNAMIC CHARACTERISTICS                                          |               |                      |      |      |          |
| Forward Current Transfer Ratio                                   |               | $ h_{fe} $           | 2.0  | 10   |          |
| $I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 20$       | MHz           | IIIe                 |      | - 10 |          |
| Output Capacitance                                               |               | $C_{obo}$            |      | 12   | pF       |
| $V_{CB} = 0 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0$ | MHz           | -000                 |      |      | r-       |
| Input Capacitance                                                |               | $C_{ibo}$            |      | 12   | pF       |
| $V_{EB} = 0 \text{ Vdc}, I_C = 0, 100 \text{ kHz} \le f \le 1.0$ |               | -100                 |      |      | r-       |

<sup>(1)</sup> Pulse Test: Pulse Width =  $300\mu$ s, Duty Cycle  $\leq 2.0\%$ .