imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA

NPN SILICON LOW POWER TRANSISTOR

Qualified per MIL-PRF-19500/376

Devices

2N2484

Qualified Level

JANTX JANTXV

Ratings	Symbol	2N2484	Unit	
Collector-Emitter Voltage	V _{CEO}	60	Vdc	
Collector-Base Voltage	V _{CBO}	60	Vdc	
Emitter-Base Voltage	V _{EBO}	6.0	Vdc	
Collector Current	I _C	50	mAdc	
Total Power Dissipation @ $T_A = +25^{0}C^{(1)}$ @ $T_C = +25^{0}C^{(2)}$	P _T	360	mW	
@ $T_{\rm C} = +25^{\circ} {\rm C}^{(2)}$	I T	1.2	W	
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	⁰ C	
THERMAL CHARACTERISTICS			<u> </u>	
Characteristics	Symbol	Max.	Unit	
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	146	⁰ C/W	TO- 1
) Derate linearly 2.06 mW/ $^{\circ}$ C above T _A = +25 $^{\circ}$ C				(TO-200
) Derate linearly 6.85 mW/ $^{\circ}$ C above T _C = +25 $^{\circ}$ C				

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Current	V	60		Vdc
$I_C = 10 \text{ mAdc}$	V _{(BR)CEO}			vuc
Collector-Emitter Cutoff Current	т	I _{CES}	5.0	ηAdc
$V_{CE} = 45 \text{ Vdc}$	ICES			
Collector-Base Cutoff Current			5.0	mAda
$V_{CB} = 45 \text{ Vdc}$	I _{CBO}		5.0 10	η Adc
$V_{CB} = 60 \text{ Vdc}$			10	μAdc
Collector-Emitter Cutoff Current	т)	2.0	ηAdc
$V_{CE} = 5.0 \text{ Vdc}$	I _{CEO}			
Emitter-Base Cutoff Current			2.0	mAda
$V_{EB} = 5.0 \text{ Vdc}$	I _{EBO}		2.0 10	η Adc
$V_{EB} = 6.0 \text{ Vdc}$			10	μAdc
6 Lake Street, Lawrence, MA 01841				120101
1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803				Page 1 of 2

2N2484 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)				
Forward-Current Transfer Ratio				
$I_{C} = 1.0 \ \mu Adc, V_{CE} = 5.0 \ Vdc$		45		
$I_{C} = 10 \ \mu Adc, V_{CE} = 5.0 \ Vdc$		200	500	
$I_{C} = 100 \ \mu Adc, \ V_{CE} = 5.0 \ Vdc$	h _{FE}	200	675	
$I_{C} = 500 \mu Adc, V_{CE} = 5.0 Vdc$		250	800	
$I_{C} = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$		250	800	
$I_{C} = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$		225	800	
Collector-Emitter Saturation Voltage	V		0.3	Vdc
$I_{\rm C}$ = 1.0 mAdc, $I_{\rm B}$ = 100 μ Adc	V _{CE(sat)}			
Base-Emitter Voltage	V	0.5	0.7	Vdc
$V_{CE} = 5.0 \text{ Vdc}, I_{C} = 100 \ \mu\text{Adc}$	V_{BE}			
DYNAMIC CHARACTERISTICS				
Forward Current Transfer Ratio				
$I_{C} = 50 \ \mu Adc, V_{CE} = 5.0 \ Vdc, f = 5.0 \ MHz$	h _{fe}	3.0		
$I_{C} = 500 \ \mu Adc, V_{CE} = 5.0 \ Vdc, f = 30 \ MHz$		2.0	7.0	
Open Circuit Output Admittance	h _{oe}		40	µmhos
$I_{C} = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$	n _{oe}			
Open Circuit Reverse-Voltage Transfer Ratio	h _{re}		8.0x10 ⁻⁴	
$I_{\rm C} = 1.0 \text{ mAdc}, V_{\rm CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$	n _{re}			
Input Impedance	h _{ie}	3.5	24	kΩ
$I_{\rm C} = 1.0 \text{ mAdc}, V_{\rm CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$	n _{ie}			
Small-Signal Short-Circuit Forward Current Transfer Ratio	h _{fe}	250	900	
$I_{\rm C} = 1.0 \text{ mAdc}, V_{\rm CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$				
Output Capacitance	C _{obo}		5.0	pF
$V_{CB} = 5.0 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	~0D0		5.0	P1
Input Capacitance	C _{ibo}		6.0	pF
$V_{EB} = 0.5 \text{ Vdc}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$			0.0	P1

(3) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.