

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

PNP SILICON LOW POWER TRANSISTOR

Qualified per MIL-PRF-19500/354

DEVICES

2N2604 2N2604UB 2N2605 2N2605UB JAN
JANTX
JANTXV

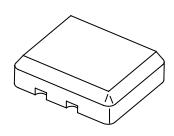
ABSOLUTE MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted)

Parameters / Test Conditions	Symbol	2N2604	2N2605	Unit
Collector-Base Voltage		80	70	Vdc
Collector-Emitter Voltage	V_{CEO}	60		Vdc
Emitter-Base Voltage	$V_{\rm EBO}$	6.0		Vdc
Collector Current	I_{C}	30 m		mAdc
Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)}$	P_{T}	400 m		mW/°C
Operating & Storage Junction Temperature Range	T_J, T_{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Parameters / Test Conditions		Symbol	Max.	Unit
Thermal Resistance, Junction-to-Ambient		D	437	0C/mW
	UB	$R_{\theta JA}$	275	°C/mW

Note:


1/ Consult 19500/354 for thermal curves

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

Parameters / Test	Symbol	Min.	Max.	Unit	
OFF CHARACTERTICS					
Collector-Base Cutoff Current					
$V_{CB} = 80V dc$	2N2604, UB		10.0		uAdc
$V_{\rm CB} = 70 \text{V dc}$	2N2605, UB	I_{CBO}	10.0		nAdc
$V_{\rm CB} = 50 \text{V dc}$	2N2604, 2N2605, UB	-080	10.0		uAdc
$V_{CB} = 50 \text{V dc}, T_A = +150 ^{\circ}\text{C}$	2N2604, 2N2605, UB		5.0		uAdc
Collector-Emitter Breakdown C	Current	V	60		Vdc
$I_C = 10 \text{mAdc}$		$V_{(BR)CEO}$	00		v dc
Emitter-Base Cutoff Current				100	
$V_{\rm FR} = 6.0 \text{Vdc}$		I_{EBO}		10.0	uAdc
$V_{EB} = 5.0 \text{Vdc}$		-EBO		2.0	ηAdc
Collector-Emitter Cutoff Currer	nt	т.		10	
$V_{CE} = 50 Vdc$		I_{CES}		10	ηAdc

TO-46 (TO-206AB)

UB Package

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

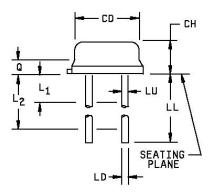
ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted) (CONT.)

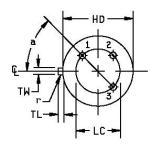
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERTICS (2)					
Forward-Current Transfer Ratio					
$I_C = 10\mu Adc, V_{CE} = 5.0Vdc$	2N2604, UB 2N2605, UB		40 100	120 300	
$I_C = 500 \mu Adc$, $V_{CE} = 5.0 Vdc$	2N2604, UB 2N2605, UB	$h_{ m FE}$	60 150	180 450	
$I_C = 10 \text{mAde}, V_{CE} = 5.0 \text{Vde}$	2N2604, UB 2N2605, UB		40 100	160 400	
$I_C = 10 \text{mAde}, V_{CE} = 5.0 \text{Vde}, T_A = -55 ^{\circ}\text{C}$	2N2604, UB 2N2605, UB		15 30		
Collector-Emitter Saturation Voltage					
$I_C = 10 \text{mAdc}, I_B = 500 \mu \text{Adc}$		V _{CE(sat)}		0.3	Vdc
Base-Emitter Saturation Voltage					
$I_C = 10 \text{mA}, I_B = 500 \mu \text{Adc}$		$V_{\mathrm{BE}(\mathrm{sat})}$	0.7	0.9	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Input Impedance	2012/04 LID		1.0	10	
$I_C = 1.0 \text{mAdc}, V_{CB} = 5.0 \text{Vdc}, f = 1.0 \text{kHz}$	2N2604, UB 2N2605, UB	h _{ie}	1.0 2.0	10 20	kΩ
Small-Signal Open-Circuit Forward Current Output	t Admittance				
$I_C = 1.0 \text{mAdc}, V_{CE} = 5.0 \text{Vdc}, f = 1.0 \text{kHz}$	2N2604, UB 2N2605, UB	h _{oe}		40 60	μmhos
Small-Signal Short-Circuit Forward Current Trans	fer Ratio				
$I_C = 1.0 \text{mAdc}, V_{CE} = 5.0 \text{Vdc}, f = 1.0 \text{kHz}$	2N2604, UB 2N2605, UB	h_{fe}	60 150	180 450	
Magnitude of Small-Signal Forward Current Trans	fer Ratio				
$I_C = 0.5 \text{mAdc}, V_{CE} = 5.0 \text{Vdc}, f = 30 \text{MHz}$		$ h_{\mathrm{fe}} $	1.0	8.0	
Output Capacitance					
$V_{CB} = 5.0 \text{Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{MHz}$		C_{obo}		6.0	pF
Noise Figure					
$V_{CE} = 5.0 \text{Vdc}, I_{C} = 10 \mu \text{Adc}, R_{g} = 10 \text{k}\Omega, f = 100 \text{Hz}$		F_1		5.0	
$V_{CE} = 5.0 \text{Vdc}, I_C = 10 \mu \text{Adc}, R_g = 10 \text{k}\Omega, f = 1.0 \text{kH}$		F_2		3.0	dB
$V_{CE} = 5.0 \text{Vdc}, I_{C} = 10 \mu \text{Adc}, R_{g} = 10 \text{k}\Omega, f = 10 \text{kHz}$		F_3		3.0	

(2) Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$




Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

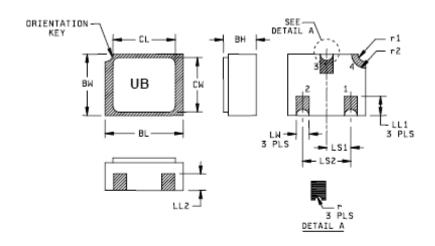
PACKAGE DIMENSIONS

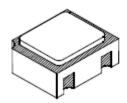
Symbol	Inc	hes	Millir	Millimeters	
J	Min	Max	Min	Max	
CD	.178	.195	4.52	4.95	
СН	.065	.085	1.65	2.16	
HD	.209	.230	5.31	5.84	
LC	.100) TP	2.54	1 TP	5
LD	.016	.021	0.41	0.53	6
LL	.500	1.750	12.70	44.45	6
LU	.016	.019	0.41	0.48	6
L_1		.050		1.27	6
L_2	.250		6.35		6
Q		.040		1.02	4
TL	.028	.048	0.71	1.22	3, 8
TW	.036	.046	0.91	1.17	3, 8
r		.010		0.25	9
α	45° TP		45°	TP	5

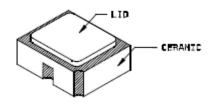
NOTES:

- 1. Dimensions are in inches. Lead 1 is emitter, lead 2 is base, and lead 3 is collector.
- 2. Millimeters are given for general information only.
- 3. Symbol TL is measured from HD maximum.
- 4. Details of outline in this zone are optional.
- 5. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods or by the gauge and gauging procedure.
- 6. Symbol LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum.
- 7. Lead number three is electrically connected to case.
- 8. Beyond r maximum, TW shall be held for a minimum length of .011 inch (0.28 mm).
- 9. Symbol r applied to both inside corners of tab.
- 10. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 1. Physical dimensions - (TO-46).


T4-LDS-0092 Rev. 2 (101320) Page 3 of 4




6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

PACKAGE DIMENSIONS

Dimensions					
Symbol	Inc	Inches		Millimeters	
	Min	Max	Min	Max	
BH	.046	.056	1.17	1.42	
BL	.115	.128	2.92	3.25	
BW	.085	.108	2.16	2.74	
CL		.128		3.25	
CW		.108		2.74	
LL_1	.022	.038	0.56	0.97	
LL_2	.017	.035	0.43	0.89	

Symbol	Inc	Inches		Millimeters	
	Min	Max	Min	Max	
LS_1	.035	.039	0.89	0.99	
LS_2	.071	.079	1.80	2.01	
LW	.016	.024	0.41	0.61	
r		.008		0.20	
\mathbf{r}_1		.012		0.31	
r_2		.022		0.56	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Hatched areas on package denote metallized areas
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 2. Physical dimensions, surface mount (UB version).

T4-LDS-0092 Rev. 2 (101320) Page 4 of 4