

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

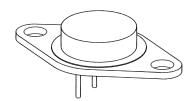
PNP POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/441

DEVICES

2N3740 2N3741

JAN
JANTX
JANTXV
JANS


ABSOLUTE MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted)

Parameters / Test Conditions	Symbol	2N3740	2N3741	Unit
Collector-Emitter Voltage	V_{CEO}	60	80	Vdc
Collector-Base Voltage	V_{CBO}	60	80	Vdc
Emitter-Base Voltage	V_{EBO}	7.0		Vdc
Base Current	I_{B}	2.0		Adc
Collector Current	I_{C}	4.0		Adc
Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)}$ @ $T_C = +100^{\circ}C$	P_{T}	25 14		W
Operating & Storage Junction Temperature Range	T_{J}, T_{stg}	-65 to	+200	°C
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	7	.0	°C/W

Note: (1) Derate linearly @ 143 mW/°C for $T_C > +25$ °C

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERTICS					
Collector-Emitter Breakdown Voltage $I_C = 100 \text{mAdc}$	2N3740 2N3741	V _{(BR)CEO}	60 80		Vdc
Collector-Emitter Cutoff Current $V_{CE} = 40Vdc$ $V_{CE} = 60Vdc$	2N3740 2N3741	I_{CEO}		10 10	μAdc
	2N3740 2N3741	I_{CEX}		300 300	ηAdc
	2N3740 2N3741	I_{CBO}		100 100	ηAdc
Emitter-Base Cutoff Current $V_{EB} = 7.0 \text{Vdc}$		I_{EBO}		100	ηAdc

TO-66 (TO-213AA)

* See Appendix A for Package Outline

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)				
Forward-Current Transfer Ratio $I_C = 100 \text{mAdc}$, $V_{CE} = 1.0 \text{Vdc}$ $I_C = 250 \text{mAdc}$, $V_{CE} = 1.0 \text{Vdc}$ $I_C = 500 \text{mAdc}$, $V_{CE} = 1.0 \text{Vdc}$ $I_C = 1.0 \text{Adc}$, $V_{CE} = 1.0 \text{Vdc}$ $I_C = 4.0 \text{Adc}$, $V_{CE} = 5.0 \text{Vdc}$	${ m h_{FE}}$	40 30 20 10 3.0	120	
Collector-Emitter Saturation Voltage $I_C = 250 \text{mAdc}$, $I_B = 25 \text{mAdc}$ $I_C = 1.0 \text{Adc}$, $I_B = 125 \text{mAdc}$	V _{CE(sat)}		0.4 0.6	Vdc
Base-Emitter Voltage $I_C = 250 \text{mAdc}, V_{CE} = 1.0 \text{Vdc}$	V _{BE(on)}		1.0	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 100 \text{mAdc}, \ V_{CE} = 10 \text{Vdc}, \ f = 5.0 \text{MHz}$	$ h_{\mathrm{fe}} $	1.0	12	
Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 50 \text{mAdc}, V_{CE} = 10 \text{Vdc}, f = 1.0 \text{kHz}$	h_{fe}	25	250	
Output Capacitance $V_{CB} = 10 V dc, \ I_E = 0, \ 100 kHz \le f \le 1.0 MHz$	C _{obo}		100	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time $V_{CC} = 30 \text{Vdc}$; $I_C = 1.0 \text{Adc}$; $I_B = 0.1 \text{Adc}$	t _{on}		400	μs
Turn-Off Time $V_{CC} = 30 \text{Vdc}$; $I_C = 1.0 \text{Adc}$; $I_{B1} = I_{B2} = 0.1 \text{Adc}$	$t_{ m off}$		1.0	μs

SAFE OPERATING AREA

DC Tests

 $T_C = +25$ °C, 1 Cycle, t = 1.0s

Test 1

 $V_{CE} = 6.25 \text{Vdc}, I_{C} = 4.0 \text{Adc}$

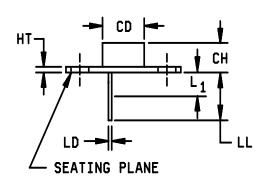
Test 2

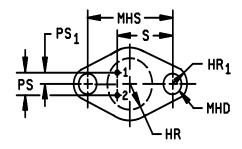
 $V_{CE} = 20 Vdc, I_{C} = 1.25 Adc$

Test 3

 $V_{CE} = 50 \text{Vdc}, I_{C} = 150 \text{mAdc}$ 2N3740 $V_{CE} = 65 \text{Vdc}, I_{C} = 150 \text{mAdc}$ 2N3741

(2) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.


TECHNICAL DATA SHEET


Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

PACKAGE DIMENSIONS

Ltr	Inc	Inches		Millimeters	
	Min	Max	Min	Max	
CD		.620		15.75	9
СН	.250	.340	6.35	8.64	
HT	.050	.075	1.27	1.91	
HR		.350		8.89	
HR_1	.115	.145	2.92	3.68	5
LD	.028	.034	0.71	0.86	4, 8, 9
LL	.360	.500	9.14	12.70	4, 8
L_1		.050		1.27	4, 8
MHD	.142	.152	3.61	3.86	6, 9
MHS	.958	.962	24.33	24.43	
PS	.190	.210	4.83	5.33	3
PS ₁	.093	.107	2.36	2.72	3
S	.570	.590	14.48	14.99	3

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. These dimensions should be measured at points .050 to .055 inch (1.27 to 1.40 mm) below seating plane. When gauge is not used, measurement will be made at seating plane.
- 4. Both terminals.
- 5. At both ends.
- 6. Two holes.
- 7. The collector shall be electrically connected to the case.
- 8. LD applies between L1 and LL. Lead diameter shall not exceed twice LD within L1.
- 9. In accordance with ASME Y14.5M, diameters are equivalent to φ symbology.
- 10. Lead 1 is the emitter, lead 2 is the base, collector is the case.

FIGURE 1. Physical dimensions, TO-66 (2N3740, 2N3741)

T4-LDS-0021 Rev. 2 (100698) Page 3 of 3