

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

NPN POWER SWITCHING SILICON TRANSISTOR

Qualified per MIL-PRF-19500/374

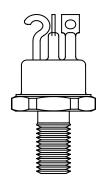
DEVICES

2N3996 2N3997 2N3998 2N3999

JAN
JANTX
JANTXV

ABSOLUTE MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted)

Parameters / Test Conditions	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	80	Vdc
Collector-Base Voltage	V_{CBO}	100	Vdc
Emitter-Base Voltage	V_{EBO}	8.0	Vdc
Base Current	I_{B}	0.5	Adc
Collector Current	I_{C}	10 (1)	Adc
Total Power Dissipation $\textcircled{@} T_A = +25^{\circ}C^{(2)}$ $\textcircled{@} T_C = +100^{\circ}C^{(3)}$	\mathbf{P}_{T}	2.0 30	W
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	3.33	°C/W


°C TO-111

Note:

- (1) This value applies for $Tp \le 1.0$ ms, duty cycle $\le 50\%$
- (2) Derate linearly 11.4 mW/ $^{\circ}$ C for $T_A > +25 ^{\circ}$ C
- (3) Derate linearly 300 mW/°C for $T_C > +100$ °C

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERTICS				
Collector-Emitter Breakdown Voltage $I_C = 50$ mAdc	V _{(BR)CEO}	80		Vdc
Collector-Emitter Breakdown Voltage $I_C = 10 \mu Adc$	V _{(BR)CBO}	100		Vdc
Collector-Emitter Cutoff Current $V_{CE} = 60 Vdc$	I_{CEO}		10	μAdc
Collector-Emitter Cutoff Current $V_{CE} = 80 V dc$, $V_{BE} = 0 V$	I _{CES}		200	ηAdc
Emitter-Base Cutoff Current $V_{EB} = 5.0 Vdc$ $V_{EB} = 8.0 Vdc$	I_{EBO}		200 10	ηAdc μAdc

2N3996, 2N3997

TO-59 2N3998, 2N3999

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)				
$\begin{aligned} & \text{Forward-Current Transfer Ratio} \\ & I_C = 50 \text{mAdc}, \ V_{CE} = 2.0 \text{Vdc} \\ & I_C = 1.0 \text{Adc}, \ V_{CE} = 2.0 \text{Vdc} \\ & I_C = 5.0 \text{Adc}, \ V_{CE} = 5.0 \text{Vdc} \\ & I_C = 50 \text{mAdc}, \ V_{CE} = 5.0 \text{Vdc} \\ & I_C = 50 \text{mAdc}, \ V_{CE} = 2.0 \text{Vdc} \\ & I_C = 1.0 \text{Adc}, \ V_{CE} = 2.0 \text{Vdc} \\ & I_C = 5.0 \text{Adc}, \ V_{CE} = 5.0 \text{Vdc} \end{aligned}$	${ m h_{FE}}$	30 40 15 60 80 20	120 240	
Collector-Emitter Saturation Voltage $I_C = 1.0 Adc$, $I_B = 0.1 Adc$ $I_C = 5.0 Adc$, $I_B = 0.5 Adc$	V _{CE(sat)}		0.25 2.0	Vdc
$\begin{aligned} &\text{Base-Emitter Saturation Voltage} \\ &I_C = 1.0 \text{Adc}, I_B = 0.1 \text{Adc} \\ &I_C = 5.0 \text{Adc}, I_B = 0.5 \text{Adc} \end{aligned}$	V _{BE(sat)}	0.6	1.2 1.6	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
$\label{eq:magnitude} \begin{split} & \text{Magnitude of Common Emitter Small-Signal Short-Circuit} \\ & \text{Forward Current Transfer Ratio} \\ & I_C = 1.0 \text{Adc}, V_{CE} = 5.0 \text{Vdc}, f = 10 \text{MHz} \end{split}$	$ h_{\mathrm{fe}} $	3.0	12	
Output Capacitance $V_{CB} = 10 V dc, I_E = 0, 100 kHz \le f \le 1.0 MHz$	C_{obo}		150	pF

SAFE OPERATING AREA

DC Tests

 $T_C = +100$ °C, 1 Cycle, t = 1.0s

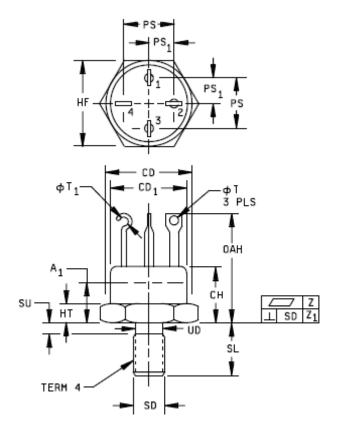
Test 1

 $V_{CE} = 80 Vdc, I_{C} = 0.08 Adc$

Test 2

 $V_{CE} = 20 \text{Vdc}, I_C = 1.5 \text{Adc}$

(4) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.



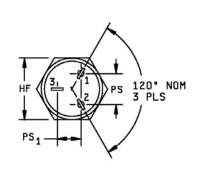
Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

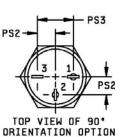
6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

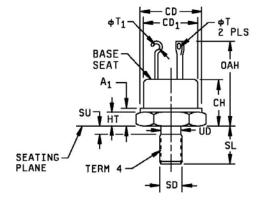
PACKAGE DIMENSIONS

Ltr	Inches		Millimeters		Notes
	Min	Max	Min	Max	
СН	.345	.400	8.76	10.16	
A_1		.250		6.35	3
CD	.370	.437	9.40	11.10	3
CD_1	.318	.380	8.08	9.65	
HF	.424	.437	10.77	11.10	
PS	.180	.215	4.57	5.46	5
PS ₁	.080	.110	2.03	2.79	5
HT	.090	.140	2.29	3.56	2, 6
OAH	.575	.675	14.61	17.15	1
UD	.155	.189	3.94	4.80	
SL	.400	.455	10.16	11.56	
SU		.078		1.98	7
φТ	.040	.065	1.02	1.65	
ϕT_1	.040	.065	1.02	1.65	4
SD	.190-32 UNF-2A				8
Z		.002		0.05	
Z_1		.006		0.15	

NOTES:


- 1. Terminal 1, emitter; terminal 2, base; terminal 3, collector; terminal 4, case.
- 2. Chamfer or undercut on one or both ends of hexagonal portion is optional.
- 3. The outline contour with the exception of the hexagon is optional within cylinder defined by CD1 and A1.
- 4. Terminal r can be flattened and pierced or hook type. A visual index is required when the flattened and pierced tab terminal contour (identical to the adjacent terminals) option is used. The case terminal (hook) is mechanically connected to the case. The other three terminals shall be electrically isolated from the case.
- 5. Angular orientation of terminals with respect to hexagon is optional.
- 6. HT dimension does not include sealing flanges.
- 7. SU is the length of incomplete or undercut threads.
- 8. SD is the pitch diameter of coated threads. Reference: Screw threads standards for Federal Service Handbook H28, part I.
- 9. Dimensions are in inches.
- * 10. Millimeters are giving for general information only.
- * 11. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.


^{*} FIGURE 1. Physical dimensions for transistor types 2N3996 and 2N3997 - Continued.


Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

SEE NOTE 11

	Dimensions				
Ltr	Inches		Inches Millimeters		Notes
	Min	Max	Min	Max	
СН	.345	.400	8.76	10.16	
A_1		.250		6.35	
CD_1	.318	.380	8.08	9.65	
CD	.370	.437	9.40	11.10	
HF	.424	.437	10.77	11.10	
PS	.125	.165	3.18	4.19	4, 7, 8
PS ₁	.110	.145	2.79	3.68	4, 7
PS ₂	.090	.140	2.29	3.56	4, 7, 8
PS ₃	.185	.215	4.70	5.46	4, 7, 8
HT	.090	.140	2.29	3.56	
OAH	.575	.675	14.61	17.15	5
UD	.155	.189	3.94	4.80	
SL	.400	.455	10.16	11.56	
SU		.078		1.98	9
φТ	.040	.065	1.02	1.65	
φT ₁	.040	.065	1.02	1.65	
SD	.190-32 UNF-2A				3

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only
- 2. Collector shall be electrically connected to the case. This terminal may be flattened and pierced only when the 90 degree ontion is used
- 3. SD is the pitch diameter of coated threads. Reference: Screw thread standards for Federal Service Handbook H28, part I.
- 4. The orientation of the terminals in relation to the hex flats is not controlled.
- 5. All three terminals.
- 6. The case temperature may be measured anywhere on the seating plane within .125 (3.18 mm) of the stud.
- 7. Terminal spacing measured at the base seat only.
- 8. Dimensions PS, PS1, PS2, and PS3 are measured from the centerline of terminals.
- 9. Maximum unthreaded dimension.
- 10. This dimension applies to the location of the center line of the terminals.
- 11. A 90 degree angle lead orientation as shown may be used at the option of the manufacturer. All dimensions of the basic outline except PS, PS1, and the 120 lead angle apply to this option.
- 12. Terminal 1, emitter; terminal 2, base; terminal 3, collector.
- 13. A slight chamfer or undercut on one or both ends of the hexagonal is optional.
- * 14. In accordance with ASME Y14.5M, diameters are equivalent to \$\phi\$x symbology.

* FIGURE 2. Physical dimensions for transistor types 2N3998 and 2N3999