mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/464

Devices

2N5685

2N5686

Qualified Level

JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings		Symbol	2N5685	2N5686	Units
Collector-Emitter Voltage		V _{CEO}	60	80	Vdc
Collector-Base Voltage		V _{CBO}	60	80	Vdc
Emitter-Base Voltage		V _{EBO}	5.0	C	Vdc
Base Current		IB	15	5	Adc
Collector Current		I _C	50)	Adc
Total Power Dissipation $@T_C = -$	$+25^{0}C^{(1)}$		30	0	W
@ T _C = -	$+100^{\circ}C^{(1)}$	P_T	17	1	W
Operating & Storage Junction Temperature Range		T _{J,} T _{stg}	-55 to +200		⁰ C
THERMAL CHARACTERISTICS					
Characteristics	Symbol	Max. Uni			Unit
Thermal Resistance, Junction-to-Case	Pore		.0584		⁰ C/W

*See appendix A for package outline

1) Derate linearly 1.715 W/⁰C between $T_C = 25^{\circ}C$ and $T_C = 200^{\circ}C$

ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$ unless otherwise noted)

Characterist	ics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 100 \text{ mAdc}$	2N5685	V _{(BR)CEO}	60		Vdc
	2N5686		80		
Collector-Emitter Cutoff Current					
$V_{CE} = 30 \text{ Vdc}$	2N5685	I _{CEO}		500	μAdc
$V_{CE} = 40 \text{ Vdc}$	2N5686			500	
Collector-Emitter Cutoff Current					
$V_{CE} = 60 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N5685	I _{CEX}		500	μAdc
$V_{CE} = 80 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N5686			500	
Collector-Base Cutoff Current					
$V_{CB} = 60 \text{ Vdc}$	2N5685	I _{CBO}		2.0	mAdc
$V_{CB} = 80 \text{ Vdc}$	2N5686			2.0	
6 Lake Street Lawrence MA 01841			•	•	12010

6 Lake Street, Lawrence, MA 01841

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

120101 Page 1 of 2

2N5685, 2N5686 JAN SERIES

Characteristics	Symbol	Min.	Max.	Unit
Emitter-Base Cutoff Current				
$V_{EB} = 5.0 \text{ Vdc}$	I _{EBO}		1.0	mAdc
ON CHARACTERISTICS ⁽²⁾				
Forward-Current Transfer Ratio				
$I_{C} = 5.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$		30		
$I_{C} = 25 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	h_{FE}	15	60	
$I_{C} = 50 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$		5.0		
Collector-Emitter Saturation Voltage				
$I_{C} = 25$ Adc, $I_{B} = 2.5$ Adc	V _{CE(sat)}		1.0	Vdc
$I_{\rm C} = 50$ Adc, $I_{\rm B} = 10$ Adc			5.0	
Base-Emitter Saturation Voltage				
$I_{\rm C} = 25$ Adc, $I_{\rm B} = 2.5$ Adc	V _{BE(sat)}		2.0	Vdc
Base-Emitter Voltage				
$I_{C} = 25 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	V _{BE(on)}		2.0	Vdc
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio				
$I_C = 5.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz}$	h _{fe}	2.0	20	
Small-Signal Short-Circuit Forward Current Transfer Ratio				
$I_{C} = 10 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$	h _{fe}	15		
Output Capacitance				
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 0.1 \text{ MHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		1200	pF
SWITCHING CHARACTERISTICS		-		
Turn-On Time				
$V_{CC} = 30 \text{ Vdc}; I_C = 25 \text{ Adc}; I_{B1} = 2.5 \text{ Adc}$	ton		1.5	μs
Turn-Off Time				
$V_{CC} = 30 \text{ Vdc}; I_C = 25 \text{ Adc}; I_{B1} = -I_{B2} = 2.5 \text{ Adc}$	toff		3.0	μs
SAFE OPERATING AREA				
DC Tests				
$T_{\rm C} = +25^{\circ}$ C, 1 Cycle, t = 1.0 s				
Test 1				
$V_{CE} = 6.0 \text{ Vdc}, I_{C} = 50 \text{ Adc}$				
Test 2				
$V_{CE} = 30$ Vdc, $I_C = 10$ Adc				
Test 3				
$V_{CE} = 50 \text{ Vdc}, I_C = 560 \text{ mAdc}$ 2N5685				
$V_{CE} = 60 \text{ Vdc}, I_C = 640 \text{ mAdc}$ 2N5686				

(2) Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.