mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA

PNP HIGH POW ER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/433

DevicesQualified Level2N43992N5745JANTX
JANTXV

MAXIMUM RATINGS

Rat	tings	Symbol	2N4399	2N5745	Unit
Collector-Emitter Voltage		V _{CEO}	60	80	Vdc
Collector-Base Voltage		V _{CBO}	60	80	Vdc
Emitter-Base Voltage		V _{EBO}	5.0		Vdc
Base Current		IB	7.5		Adc
Collector Current		I _C	30	20	Adc
Total Power Dissipation	@ $T_A = +25^{\circ}C^{(1)}$	PT	5.0 115		W
	@ $T_C = +100^{\circ}C^{(2)}$				W
Operating & Storage Junction Temperature Range		T _J , T _{stg}	-55 to +200		⁰ C
THERMAL CHARAG	CTERISTICS				
Characteristics		Symbol	Max.		Unit
Thermal Resistance,	Junction-to-Case	$R_{\theta JC}$	0.875		°C/W
	Junction-to-Ambient	$R_{\theta JA}$	3	5	0,11

ТО-3* (ТО-204АА)

*See appendix A for package outline

1) Derate linearly @ 28.57 mW/ $^{\circ}$ C for T_A > +25 $^{\circ}$ C

2) Derate linearly @ $1.15 \text{ W/}^{\circ}\text{C}$ for $T_{\text{C}} > +100^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristi	cs	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 200 \text{ mAdc}$	2N4399	V _{(BR)CEO}	60		Vdc
	2N5745		80		
Collector-Emitter Cutoff Current					
$V_{CE} = 60 \text{ Vdc}$	2N4399	I _{CEO}		100	μAdc
$V_{CE} = 80 \text{ Vdc}$	2N5745			100	
Collector-Emitter Cutoff Current					
$V_{CE} = 60 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N4399	I _{CEX}		5.0	μAdc
$V_{CE} = 80 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N5745			5.0	
Emitter-Base Cutoff Current		T		5.0	
$V_{EB} = 5.0 \text{ Vdc}$		I _{EBO}		5.0	μAdc

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

2N4399, 2N5745 JAN SERIES

Characteristics		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS ⁽³⁾		· ·			
Forward-Current Transfer Ratio					
$I_{C} = 1.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$			40	425	
$I_{C} = 15 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	2N4399	1	15 15	60 60	
$I_{C} = 10 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	2N5745	\mathbf{h}_{FE}			
$I_{C} = 30 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$	2N4399		5.0		
$I_{C} = 20$ Adc, $V_{CE} = 5.0$ Vdc	2N5745		5.0		
Collector-Emitter Saturation Voltage					
$I_{C} = 5.0 \text{ Adc}, I_{B} = 0.5 \text{ Adc}$		V		0.55	Vdc
$I_{C} = 10 \text{ Adc}, I_{B} = 1.0 \text{ Adc}$	2N4399	V _{CE(sat)}		0.75	
	2N5745			1.0	
Base-Emitter Saturation Voltage					
$I_{C} = 10 \text{ Adc}, I_{B} = 1.0 \text{ Adc}$		V _{BE(sat)}		1.7	Vdc
$I_{C} = 15$ Adc, $I_{B} = 1.5$ Adc	2N4399	• BE(sat)		1.8	
	2N5745			2.0	
DYNAMIC CHARACTERISTICS					
Magnitude of Common Emitter Small-Signal Short-Circuit					
Forward Current Transfer Ratio		h _{fe}	4.0	40	
$I_{\rm C} = 1.0 \text{ Adc}, V_{\rm CE} = 10 \text{ Vdc}, f = 1.0 \text{ M}$					
Small-Signal Short-Circuit Forward Current Transfer Ratio		h _{fe}	40	425	
$I_{\rm C} = 1.0 \text{ Adc}, V_{\rm CE} = 10 \text{ Vdc}, f = 1.0 \text{ M}$	Hz	me	10	125	
Output Capacitance		C _{obo}		1000	pF
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$		000		1000	P-
SAFE OPERATING AREA					
DC Tests					
$T_{\rm C}$ = +25°C, 1 Cycle, t = 1.0 s					
Test 1					
$V_{CE} = 6.67 \text{ Vdc}, I_C = 30 \text{ Adc}$	2N4399				
$V_{CE} = 10$ Vdc, $I_C = 20$ Adc	2N5745				
Test 2					
$V_{CE} = 20$ Vdc, $I_C = 10$ Adc Test 3	All Types				
$V_{CE} = 40$ Vdc, $I_{C} = 3.0$ Adc	All Types				
Test 4	• •				
$V_{CE} = 50 \text{ Vdc}, I_{C} = 600 \text{ mAdc}$	2N4399				
$V_{CE} = 60$ Vdc, $I_C = 600$ mAdc	2N5745				

(3) Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.