: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MULTIPLE (QUAD) NPN SILICON DUAL IN-LINE AND FLATPACK SWITCHING TRANSISTOR
 Qualified per MIL-PRF-19500/559

DEVICES

2N6989 2N6989U
2N6990

LEVELS

JAN
JANTX JANTXV JANS

ABSOLUTE MAXIMUM RATINGS $\left(T_{C}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameters / Test Conditions	Symbol	Value	Unit
Collector-Emitter Voltage ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CEO}}$	50	Vdc
Collector-Base Voltage ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CBO}}$	75	Vdc
Emitter-Base Voltage $^{(3)}$	$\mathrm{V}_{\mathrm{EBO}}$	6.0	Vdc
Collector Current ${ }^{(3)}$	I_{C}	800	mAdc
Total Power Dissipation	P_{D}	1.5 1.0 $\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	W
Operating \& Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{op}}, \mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$

Note:

1. Maximum voltage between transistors shall be $\geq 500 \mathrm{Vdc}$.
2. For derating, see figures $6,7,8$ and 9. Ratings apply to total package.
3. For thermal impedance curves, see figures $10,11,12$ and 13.
4. Ratings apply to each transistor in the array.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit				
OFF CHARACTERTICS								
Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	50		Vdc				
Collector-Base Cutoff Current								
$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{Vdc}$	$\mathrm{I}_{\mathrm{CBO}}$		10	$\eta \mathrm{Adc}$				
$\mathrm{V}_{\mathrm{CB}}=75 \mathrm{Vdc}$		10	$\mu \mathrm{Adc}$					
$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$			10	$\mu \mathrm{Adc}$				
Emitter-Base Cutoff Current			10	$\mu \mathrm{Adc}$				
$\mathrm{V}_{\mathrm{EB}}=4.0 \mathrm{Vdc}$	$\mathrm{I}_{\mathrm{EBO}}$		10	$\eta \mathrm{Adc}$				
$\mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{Vdc}$								

TO-116 - 2N6989

20 PIN LEADLESS 2N6989U

14 PIN FLAT PACK 2N6990

ELECTRICAL CHARACTERISTICS ($\boldsymbol{T}_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS ${ }^{(4)}$				
$\begin{aligned} & \text { Forward-Current Transfer Ratio } \\ & \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 50 \\ 75 \\ 100 \\ 100 \\ 30 \\ 35 \end{gathered}$	$\begin{aligned} & 325 \\ & 300 \end{aligned}$	
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc} \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$		$\begin{aligned} & 0.3 \\ & 1.0 \end{aligned}$	Vdc
Base-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{mAdc}$ $\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc}$	$\mathrm{V}_{\text {BE(sat) }}$	0.6	$\begin{aligned} & 1.2 \\ & 2.0 \end{aligned}$	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}$	$\mid \mathrm{h}_{\mathrm{fe}}$	2.5	8.0	
Forward current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}$	h_{fe}	50		
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		8.0	pF
Input Capacitance $\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{ibo}}$		25	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time SEE FIGURE $14 /$ MIL-PRF-19500/559	t_{on}			
Turn-Off Time SEE FIGURE 15 / MIL-PRF-19500/559	$\mathrm{t}_{\mathrm{off}}$		35	$\eta \mathrm{~s}$

(4) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

PACKAGE DIMENSIONS

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
BH		.200		5.08	
LW	.014	.023	0.36	0.58	10
LW $_{1}$.030	.070	0.76	1.78	4,10
LT	.008	.015	0.20	0.38	10
BL		.785		19.94	6
BW	.220	.310	5.59	7.87	6
BW $_{1}$.290	.320	7.37	8.13	9

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min		
LS	.100 BSC		2.54 BSC		7,11
LL	.125	.200	3.18	5.08	
LL_{1}	.150		3.81		
LO	.005		0.13		8
LO_{1}		.098		2.49	8
LO_{2}	.015	.060	0.38	1.52	5
α	0°	15°	0°	15°	

NOTES:

1 Dimension are in inches.
2 Millimeters are given for general information only.
3 Index area: A notch or pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
4 The minimum limit for dimension LW_{1} may be .023 inch (0.58 mm) for leads number $1,7,8$ and 14 only.
5 Dimension LO_{2} shall be measured from the seating plane to the base plane.
6 This dimension allows for off-center lid, meniscus, and glass overrun.
7 The basic pin spacing is .100 inch $(2.54 \mathrm{~mm})$ between centerlines. Each pin centerline shall be located within $\pm .010$ inch (0.25 mm) of its exact longitudinal position relative to pins 1 and 14.
8 Applies to all four corners (leads number 1, 7, 8 and 14).
9 Lead center when α is 0 degrees. BW_{1} shall be measured at the centerline of the leads.
10 All leads.
11 Twelve spaces.
12 No organic or polymeric materials shall be molded to the bottom of the package to cover the leads.
13 In accordance with ASME Y14.5M, diameters are equivalent to ϕx symbology.

FIGURE 1. Physical Dimension and Configuration for type 2N6989

PACKAGE DIMENSIONS

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
CH	.030	.115	0.76	2.92	
LW	.010	.019	0.25	0.48	7
TL	.008	.015	0.20	0.38	12
BL		.280		7.11	5
BW	.240	.260	6.10	6.60	
LU		.290		7.37	5
BW $_{2}$.125		3.18		

Symbol	Dimensions				Notes	
	Inches		Millimeters			
	Min	Max	Min			
BW_{3}	.030		0.76			
LS	.050 BSC		1.27		BSC	6,8
LT	.003	.006	0.076	0.152	7	
LL	.250	.370	6.35	9.40		
LD_{2}	.005	.040	0.13	1.02	4	
LO^{2}	.005		0.13		9,10	
LO_{3}	.004				13	
α	30°	90°	30°	90°	14	

NOTES:

1 Dimension are in inches.
2 Millimeters are given for general information only.
3 Index area: A notch or pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. Alternatively, a tab (dine TL) may be used to identify pin one.
4 Dimension LD_{2} shall be measured at the point of exit of the lead from the body.
5 This dimension allows for off-center lid, meniscus, and glass overrun.
6 The basic pin spacing is .050 inch $(1.27 \mathrm{~mm})$ between centerlines. Each pin centerline shall be located within $\pm .005$ inch $(0.13$ mm) of its exact longitudinal position relative to pins 1 and 14.
7 All leads: Increase maximum limit by .003 inch $(0.08 \mathrm{~mm})$ measured at the center of the flat when the lead finish is solder.
8 Twelve spaces.
9 Applies to all four corners (leads number 2, 6, 9 and 13).
10 Dimension LO may be .000 inch (0.00 mm if leads number $2,6,9$, and 13) bend toward the cavity of the package within one lead width from the point of entry of the lead into the body or if the leads are brazed to the metalized ceramic body.
11 No organic or polymeric materials shall be molded to the bottom of the package to cover the leads.
12 Optional, see note 1. If a pin one identification mark is used in addition to this tab, the minimum limit of dimension TL does not apply.
13 Applies to leads number 1, 7, 8, and 14.
14 Lead configuration is optional within dimension BW except dimensions LW and LT apply.
15 In accordance with ASME Y14.5M, diameters are eqivalent to ϕx symbology.
16 Pins $1,7,8$, and 14 are collectors.
17 Pin 2, 6, 9, and 13 are bases.
18 Pin 3, 5, 10, and 12 are emitters.
19 Pins 4 and 11 are no contacts.

FIGURE 2. Physical dimensions for type 2N6990

FIGURE 3. Schematic and terminal connections for types 2N6989 \& 2N6990

PACKAGE DIMENSIONS

NOTES:

1 Dimensions are in inches.
2 Millimeters are given for general information only.
3 Unless otherwise specified, tolerance is $\pm .005$ inch (0.13 mm).
4 In accordance with ASME Y14.5M, diameters are equivalent to $\phi \mathrm{x}$ symbology.

Symbol	Dimensions			
	Inches		Millimeters	
	Min	Max	Min	Max
A	. 073	. 085	1.85	2.16
A_{1}	. 063	. 075	1.60	1.91
D	. 345	. 355	8.76	9.02
D_{1}	. 195	. 205	4.95	5.21
D_{2}	. 050 TYP		1.27 TYP	
D_{3}	. 070	. 080	1.78	2.03
E	. 025 REF		0.64 REF	
L_{1}	. 050 REF for pins 2 through 20		1.27 REF for pins 2 through 20	
L_{2}	. 080	. 090	2.03	2.29

FIGURE 4. Physical demension for type 2N6989U

