

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

- 2:1 Input Range
- Very High Power Density
- High Efficiency Up to 92%
- Remote On/Off
- 1600 VDC Isolation
- OCP, OVP & OTP Functions
- 3 Year Warranty

Specification

Input

Input Voltage Range

Input Current Input Reflected

Ripple Current

Input Surge

• 24 V (18-36 VDC), 48 V (36-75 VDC)

See table

See table

• ±0.5% max

• ±0.5% max

30 ms typical

• 0.02%/°C

• ±10%

• ±1%

- 20 mA pk-pk through 12 µH inductor, 5 Hz to 20 MHz
- Undervoltage Lockout 24 V models: ON 17.8 V, OFF 16 V typical 48 V models: ON 33.5 V, OFF 30.5 V typical
 - 24 V models 50 VDC for 100 ms 48 V models 100 VDC for 100 ms

· No minimum load required

75 mV for 3V3 +5 V models.

100 mV for other models (see note 2)

1% in <250 µs for a 25% load change

• 3% max deviation, recovery to within

General

Efficiency Isolation

• 1600 VDC Input to Output

1600 VDC Input to Case 1600 VDC Output to Case

Isolation Capacitance Switching Frequency **Power Density MTBF**

- · 2000 pF typical 270 kHz typical
- 37.5 W/in³

See table

 >110 kHrs min to MIL-HDBK-217F at 25 °C, GB

Output

Output Voltage

Output Voltage Trim Minimum Load

Line Regulation

Load Regulation

Setpoint Accuracy

Start Up Time

Ripple & Noise

Transient Response

Temperature

Coefficient

Remote On/Off

Overload Protection

Overvoltage Protection • 3.3 V models: 3.9 V typical

12 V models: 15 V typical 15 V models: 18 V typical • 115-130% of output current

5 V models: 6.2 V typical

Short Circuit Protection • Trip & restart (Hiccup mode), auto recovery

• On = Logic High (>3.0) or Open Off = Logic Low (<1.2 V) or short pin 2

Environmental

Operating Temperature • -40 °C to +85 °C, see derating curve

Case Temperature Cooling

Operating Humidity

Storage Temperature

• +105 °C max

· Natural convection

• 5-95% RH, non-condensing

-40 °C to +125 °C

EMC

Emissions

ESD Immunity

Radiated Immunity EFT/Burst

Surge

Conducted Immunity Magentic Field

• EN55022 class A conducted & radiated with no external components

• EN61000-4-2, 4 kV contact discharge, Perf Criteria B

EN61000-4-3, 3 V/m, Perf Criteria A

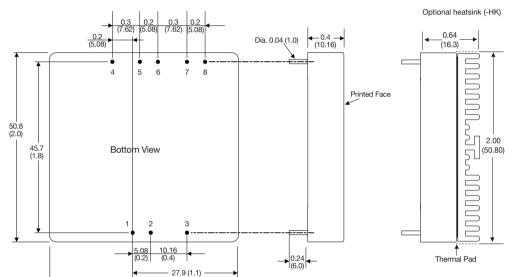
• EN61000-4-4, level 1, Perf Criteria A*

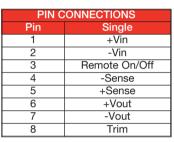
EN61000-4-5, level 1, Perf Criteria A

 EN61000-4-6, 3 Vrms, Perf Criteria A • EN61000-4-8, 1 A/m, Perf Criteria A

*External input capacitor required, 220 μF/100 V.

Models and Ratings

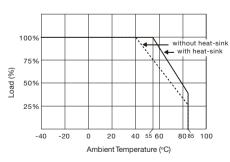



Input Voltage	Output Voltage	Output Current	Input Current ⁽¹⁾		Maximum	Efficiency	Model Number
			No Load	Full Load	Capacitive Load	Liliciency	Woder Number
18-36 VDC	3.3 V	14.0 A	80 mA	2151 mA	36000 μF	91%	JCK6024S3V3
	5.0 V	12.0 A	100 mA	2762 mA	20400 μF	92%	JCK6024S05
	12.0 V	5.0 A	40 mA	2793 mA	3550 μF	91%	JCK6024S12
	15.0 V	4.0 A	40 mA	2793 mA	2300 μF	91%	JCK6024S15
36-75 VDC	3.3 V	14.0 A	50 mA	1075 mA	36000 μF	91%	JCK6048S3V3
	5.0 V	12.0 A	60 mA	1389 mA	20400 μF	92%	JCK6048S05
	12.0 V	5.0 A	40 mA	1397 mA	3550 μF	91%	JCK6048S12
	15.0 V	4.0 A	40 mA	1397 mA	2300 μF	91%	JCK6048S15

Notes

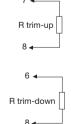
- 1. Input current specified at nominal input.
- 2. Measured with 1 μF ceramic capacitor in parallel with a 10 μF electrolytic across output rails and 20 MHz bandwidth.
- 3. For heatsink option, add '-HK' to the end of the part number

Mechanical Details



Notes

- 1. All dimensions are in inches (mm).
- 2. Weight: 0.154 lbs (70 g) approx
- 3. Pin diameter: 0.04 \pm 0.002 (1.0 \pm 0.05)
- 4. Pin pitch tolerance: ±0.014 (±0.35)
- 5. Case tolerance: ±0.02 (±0.5)


Application Notes

Derating Curve

50.8 (2.0) -

External Output Trim

$$R_{trim-up} \ = \frac{(R2 + R3) \times R_{TU}}{(R2 + R3) - R_{TU}} \ -R4 \qquad Where: \qquad R_{TU} \ = \ \frac{R1 \times (R2 + R3) \times K}{V_{REQ} \times R3 - (R2 + R3) \times K}$$

$$R_{TU} = \frac{R1 \times (R2 + R3) \times K}{V_{PEO} \times R3 - (R2 + R3) \times K}$$

$$R_{trim\text{-down}} = \frac{R1 \times R_{TD}}{R1 - R_{TD}} - R4$$

Where:
$$R_{TD} = \frac{R3 \times (V_{REQ} - K)}{K}$$
 -R2

Model	R1	R2	R3	R4	K
JCK60XXS3V3	8200	330	5100	24000	1.24
JCK60XXS05	5100	22	5100	15000	2.495
JCK60XXS12	7500	6200	3600	20000	2.495
JCK60XXS15	8200	6800	3000	24000	2.495

Remote Sense

If Remote Sense is not required, the +Sense and -Sense pins should be locally connected to +Vout and -Vout respectively. Remote sense can compensate for a total volt drop of 10%. When remote sense is used, output power must not exceed rated power.

