: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

TUV

Panasonic ideas for life

COMPACT POWER RELAY FOR INDUCTIVE LOAD

Slim TMP type

Flat TM type

Flat TMP type mm inch

FEATURES

- Compact, high-capacity, and resistant to inductive loads
The relay is a compact $16 \times 30.4 \times 26.5 \mathrm{~mm}$ $.630 \times 1.197 \times 1.043$ inch. It can control an inductive load $(\cos \varphi=0.7)$ with inrush current of 70 A and steady state current of 20 A .

- Excellent contact welding resistance

High contact pressure, a forced opening mechanism, and a forced wiping mechanism realizes an excellent contact welding resistance.

- High breakdown voltage and surge resistant relay
More than 6.4 mm .252 inch maintained for the insulation distance between contacts and coil, and the breakdown voltage between contacts and coil is $5,000 \mathrm{~V}$ for 1 minute. In addition, the surge resistance between contacts and coil is greater than $10,000 \mathrm{~V}$.

- Resistant to external force

An absorber mechanism is used on the load terminals, giving a large improvement in characteristics variations caused by the external force during FASTON placement/removal.

- Flux resistance mechanism

The terminal area is plugged with resin to prevent flux seepage during PCB mounting. (TMP type)

- Conforms to the various safety standards
UL, CSA approved.
TÜV, VDE under application.
- The line up can support economical mounting methods.
The relay are equipped with a drive terminal (coil terminal) on one side for PCBs, and a load terminal (tab terminal \#250) on the reverse side. The line up includes the TM type which can be attached directly to the PCB composing a drive circuit, and the TMP type which supports economical wiring. The TMP type can also be directly attached, and a high capacity load can be wired to the tab terminal.

SPECIFICATIONS

Contact

Arrangement				1 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)				$30 \mathrm{~m} \Omega$ (Cd free type: $100 \mathrm{~m} \Omega$)
Contact material				Silver alloy
Rating (resistive load)	Nominal switching capacity			20 A 250 V AC
	Max. switching power			5,000 VA
	Max. switching voltage			250 V AC
	Max. switching current			20 A
	Min. switching capacity\#1			$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC
Expected life (min. ope.)	Mechanical (at 180 cpm)			10^{6}
	Electrical Life (at 20 cpm)	Resistive 250 V AC	$\begin{aligned} & \text { load } 20 \mathrm{~A}, \\ & (\cos \varphi=1) \end{aligned}$	10^{5}
		Inductive load	Inrush 70 A, Steady 20 A (250 $V A C \cos \varphi=0.7)$	10^{5}
			Inrush 80 A, Cut-off 80 A (When the motor is locked) (250 $\mathrm{V} \operatorname{AC} \cos \varphi=0.7$)	1.5×10^{3}

Coil
Nominal operating power
\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{* 3}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
${ }^{*}$ Excluding contact bounce time
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT

Characteristics

Max. operating speed			180 cpm
Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*2	Between open contacts		1,000 Vrms for 1 min .
	Between contacts and coil		5,000 Vrms for 1 min .
Surge voltage between contact and coil*3			Min. 10,000 V
Operate time*4 (at nominal voltage)(at $20^{\circ} \mathrm{C}$)			Max. 20ms (Approx. 8 ms)
Release time (without diode)*4 (at nominal voltage)(at $20^{\circ} \mathrm{C}$)			Max. 10ms (Approx. 3 ms)
Temperature rise (at $60^{\circ} \mathrm{C}$)			Max. $55^{\circ} \mathrm{C}$ (Contact switching current: $20 \mathrm{~A} /$ voltage applied to coil: $100 \% \mathrm{~V}$)
Shock resistance	Functiona**5		Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ \{10 G\}
	Destructive*6		Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G\}
Vibration resistance	Functional*7		10 to 55 Hz at double amplitude of 1.6 mm
	Destructive		10 to 55 Hz at double amplitude of 2 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+140^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight	Slim TMP		Approx. 28 g .99 oz
	Flat TMP		Approx. 32 g 1.13 oz
	Flat TM		Approx. 33 g 1.16 oz

TYPICAL APPLICATIONS ORDERING INFORMATION

- Compressor and heater control in air conditioners
- Power control in hot air type heaters
- Magnetron control in microwave ovens
- Lamp and motor control in OA equipment such as copiers and facsimiles.

(Note) 1. Standard packing: Carton: 50pcs. Case: 200pcs. UL/CSA, VDE approved type is standard.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.				Nominal voltage, V DC	Pick-up voltage	Drop-out voltage,	Nominal operating current, mA	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
Slim		Flat								
TMP	PCB	TMP	TM							
JM1aN-TMP-DC5V (-F)	JM1aN-P-DC5V (-F)	JM1aN-ZTMP-DC5V (-F)	JM1aN-ZTM-DC5V (-F)	5	3.5	0.5	180	27.8	900	5.5
JM1aN-TMP-DC6V (-F)	JM1aN-P-DC6V (-F)	JM1aN-ZTMP-DC6V (-F)	JM1aN-ZTM-DC6V (-F)	6	4.2	0.6	150	40	900	6.6
JM1aN-TMP-DC9V (-F)	JM1aN-P-DC9V (-F)	JM1aN-ZTMP-DC9V (-F)	JM1aN-ZTM-DC9V (-F)	9	6.3	0.9	100	90	900	9.9
JM1aN-TMP-DC12V (-F)	JM1aN-P-DC12V (-F)	JM1aN-ZTMP-DC12V (-F)	JM1aN-ZTM-DC12V (-F)	12	8.4	1.2	75	160	900	13.2
JM1aN-TMP-DC24V (-F)	JM1aN-P-DC24V (-F)	JM1aN-ZTMP-DC24V (-F)	JM1aN-ZTM-DC24V (-F)	24	16.8	2.4	37.5	640	900	26.4
JM1aN-TMP-DC48V (-F)	JM1aN-P-DC48V (-F)	JM1aN-ZTMP-DC48V (-F)	JM1aN-ZTM-DC48V (-F)	48	33.6	4.8	18.75	2,560	900	52.8

DIMENSIONS

Slim TMP type

General tolerance: $\pm 0.4 \pm .016$

Schematic

PC board pattern (Bottom view)

Flat TM type

General tolerance: $\pm 0.4 \pm .016$

REFERENCE DATA

1. Coil temperature rise

Place to be measured: Inside of coil Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

2. Ambient temperature characteristics Sample: JM1aN-TMP-DC24V, 5 pcs.

3. Operate/release time Sample: JM1aN-TMP-DC24V, 5 pcs.

5-(1). 200 V AC electrical life test (200 V AC inverter dummy load)
Sample: JM1aN-TMP-DC12V, 6 pcs.
Change of pick-up and drop-out voltage
Contact welding: 0 time
Load: Inrush 108 A, Steady 15 A,
Switching frequency: ON 5 s , OFF 5 s Circuit

5-(2). 100 V AC electrical life test (100 V AC inverter dummy load)

5-(3). Inrush 70 A, Steady 20 A, 250 V AC compressor dummy load

Contact welding: 0 time Miscontact: 0 time

For Cautions for Use, see Relay Technical Information

