imall

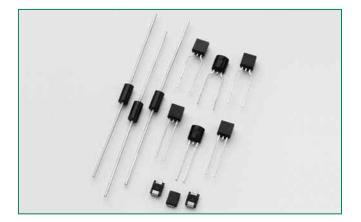
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



RoHS KxxxOyH Series

ittelfuse

Expertise Applied | Answers Delivered

Schematic Symbol

Electrical Specifications (T, = 25°C, unless otherwise specified)

Description

The new Kxxx0yH is a higher energy SIDAC switch for gas ignition applications requiring higher current pulse current especially at low repetition rate. It is offered in a DO-15 and TO-92 leaded packages as well as DO-214 surface mount package. Voltage activation of this solid state switch is accomplished with peak voltage level of 190 to 280Volts. The SIDAC is a silicon bilateral voltage triggered Thyristor switch that switches on through a negative resistance region to a low on-state voltage. Conduction will continue until current is interrupted or lowered below minimum holding current of the device.

Features

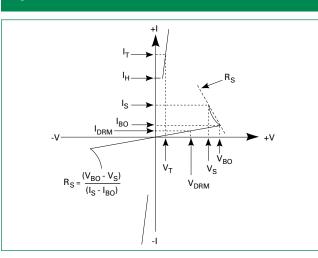
- AC Circuit OrientedTriggering Voltage of 190
- 280A Pulse Current Capability
- RoHS Compliant

Applications

to 280V

Suitable for high voltage power supplies, natural gas igniters, and Xenon flash ignition.

Symbol	Parameters	Test C	onditions	Min	Max	Unit
V _{BO}		К2000уН		190	215	- V
	Breakover/Trigger Voltage	K2:	К2200уН		230	
	breakover/ mgger voltage	K2	К2400уН		250	
		K2	K2500yH		280	
		K2	К2000уН			
V	Repetitive Peak Off-state Voltage	K2:	200yH	180		V
V _{DRM}	Repetitive Fear On-State Voltage	K24	400yH	190		v
			500yH	200		
I _{T(RMS)}	On-state RMS Current		z, T _J < 125°C		1	A
V _{TM}	Peak On-state Voltage		$I_{T} = 1A$		1.5	V
I _H	Dynamic Holding Current	$R_{L} = 100\Omega$ 50/60Hz Sine Wave			150	mA
R _s	Switching Resistance, $R_s = \frac{(V_{BO} - V_s)}{(I_s - I_{BO})}$	50/60Hz Sine Wave			100	Ω
I _{BO}	Breakover Current	50/60Hz	z Sine Wave		50	μA
	Peak Repetitive Pulse Current	t 10.00	60Hz		120	- A
TRM	(refer to figure 4)	$t_p = 10 \mu s$	5Hz		280	A
di/dt	Critical Rate of Rise of On-State Current				150	A/µs
dv/dt	Critical Rate of Rise of Off-State Voltage			1500	1	V/µs
T _s T _J	Storage Temperature Range			-40	150	°C
T	Junction Temperature Range			-40	125	°C
D	Thermal Desistance, Junction to Load	DO-15 DO-214			18	°C/W
R _{ejl}	Thermal Resistance, Junction to Lead				30	- C/VV
R _{eJC}	Thermal Resistance, Junction to Case	D	DO-92		35	°C/W
	Thermal Desistance Junction to Ambient	D	DO-15 DO-92		75	0000
R _{eja}	Thermal Resistance, Junction to Ambient	D			95	°C/W


High Energy SIDACs

Note: xxx - voltage, y = package

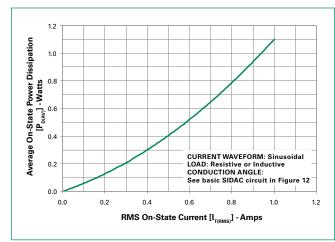


Figure 1: V-I Characteristics

Figure 2: On-state Current vs. On-state Voltage (Typical)

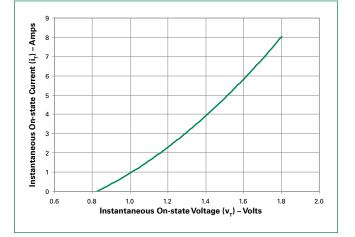
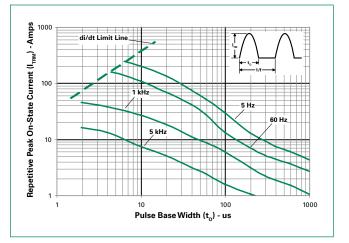
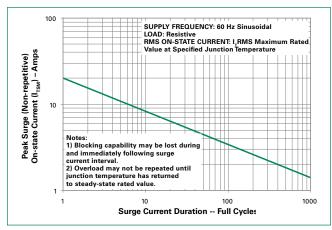
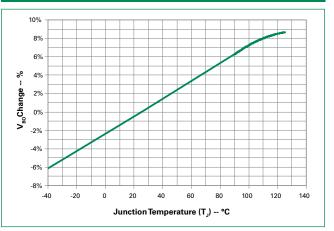
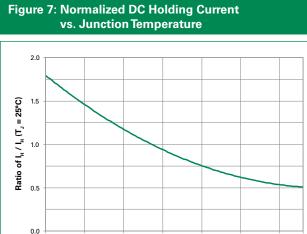
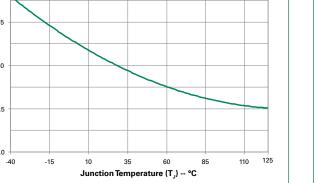
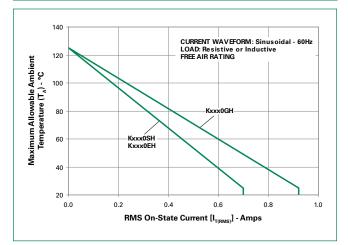



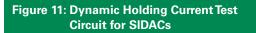
Figure 4: Repetitive Peak On-state Current (I_{TRM}) vs. Pulse Width at Various Frequencies

Figure 5: Surge Peak On-state Current vs. Number of Cycles


Figure 6: Normalized V_{BO} Change vs. Junction Temperature


Kxxx0yH Series



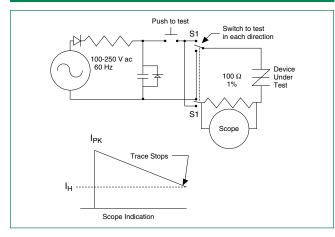


Figure 8: Maximum Allowable Case Temperature vs. RMS On-State Current

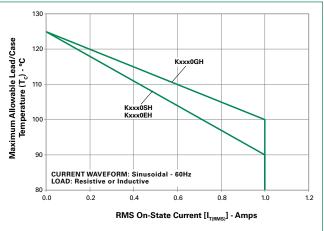
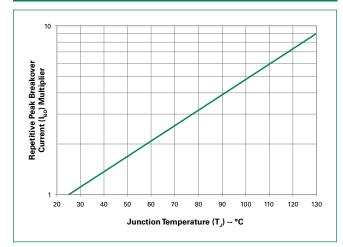
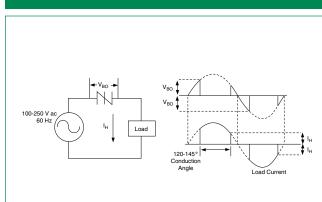
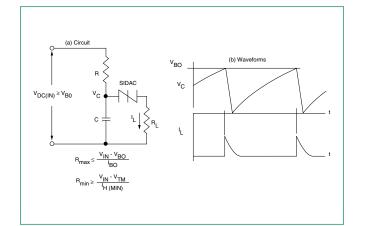




Figure 10: Normalized Repetitive Peak Breakover Current (I_{PO}) vs. Junction Temperature


Figure 12: Basic SIDAC Circuit

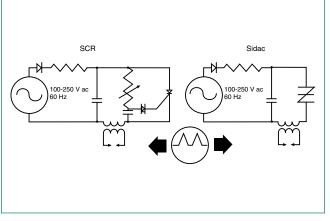
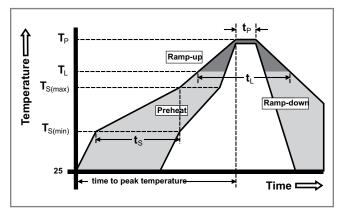


Figure 13: Relaxation Oscillator Using a SIDAC


Figure 14: General Gas Ignitor Circuit

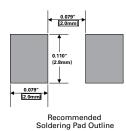
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra (T _L) to pea	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Deflesse	- Temperature (T _L) (Liquidus)	217°C	
Reflow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time with Temperatu	in 5°C of actual peak ıre (t _p)	20 – 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

Terminal Material	Copper Alloy	
Terminal Finish	100% Matte Tin-plated /Pb Free solder dipped.	
Body Material	UL recognized epoxy meeting flammability classification 94V-0.	

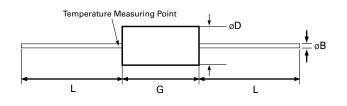
Design Considerations


Dimensions - DO-214

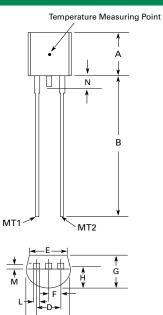
Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Overheating and surge currents are the main killers of SIDACs. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Reliability/Environmental Tests

Test	Specifications and Conditions		
High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A Rated V _{DRM} (VAC-peak), 125°C, 1008 hours		
Temperature Cycling	MIL-STD-750: Method 1051 -40°C to 150°C, 15-minute dwell, 100 cycles		
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 (VDC), 85°C, 85%RH, 1008 hours		
High Temp Storage	MIL-STD-750: Method 1031 150°C, 1008 hours		
Low-Temp Storage	-40°C, 1008 hours		
Thermal Shock	MIL-STD-750: Method 1056 0°C to 100°C, 5-minute dwell, 10-second transfer, 10 cycles		
Autoclave (Pressure Cooker Test)	EIA/JEDEC: JESD22-A102 121°C, 100%RH, 2atm, 168 hours		
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds		
Solderability	ANSI/J-STD-002: Category 3		
Repetitive Surge Life Testing	MIL-STD-750: Method 2036, Condition E		



Dimension	Inc	hes	Millimeters		
Dimension	Max	Max	Min	Max	
А	0.130	0.156	3.30	3.95	
В	0.201	0.220	5.10	5.60	
С	0.077	0.087	1.95	2.20	
D	0.159	0.181	4.05	4.60	
E	0.030	0.063	0.75	1.60	
F	0.075	0.096	1.90	2.45	
G	0.002	0.008	0.05	0.20	
Н	0.077	0.104	1.95	2.65	
J	0.043	0.053	1.09	1.35	
К	0.006	0.016	0.15	0.41	
L	0.030	0.055	0.76	1.40	



Dimensions - DO-15

Dimension	Inc	hes	Millimeters		
Dimension	Max	Max	Min	Max	
øB	0.028	0.034	0.711	0.864	
øD	0.120	0.140	3.048	3.556	
G	0.235	0.270	5.969	6.858	
L	1.000		25.400		

Dimensions - TO-92 with Type 70 Lead Form

Dimension	Inc	hes	Millimeters		
Dimension	Max	Max	Min	Max	
А	0.176	0.196	4.47	4.98	
В	0.500		12.70		
D	0.095	0.105	2.41	2.67	
E	0.150		3.81		
F	0.046	0.054	1.16	1.37	
G	0.135	0.145	3.43	3.68	
Н	0.088	0.096	2.23	2.44	
J	0.176	0.186	4.47	4.73	
K	0.088	0.096	2.23	2.44	
L	0.013	0.019	0.33	0.48	
М	0.013	0.017	0.33	0.43	
Ν		0.060		1.52	

Notes:

1. Type 70 lead form as shown is standard for the E package.

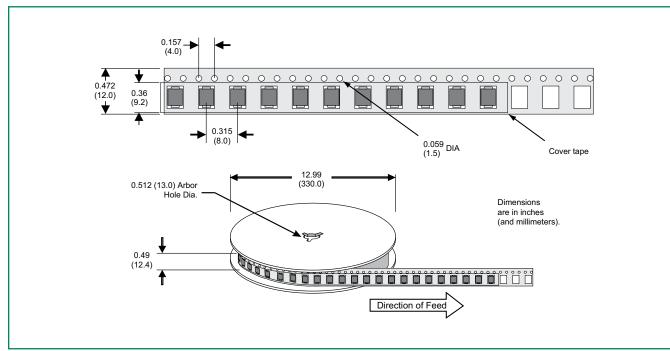
2. All leads are insulated from case. Case is electrically nonconductive (rated at 16000V ac rms for one minute from leads to case over the operating temperature range.)

3. Mold flash shall not exceed 0.13 mm per side.

Product Selector

Part Number	Switching Voltage Range		Blocking Voltage	Packages		
	V _{во} Minimum	V _{во} Maximum	V _{DRM}	DO-15	DO-214	TO-92
К2000уН	190V	215V	180V	K2000GH	K2000SH	K2000EH70
К2200уН	205V	230V	180V	K2200GH	K2200SH	K2200EH70
К2400уН	220V	250V	190V	K2400GH	K2400SH	K2400EH70
K2500yH	240V	280V	200V	K2500GH	K2500SH	K2500EH70

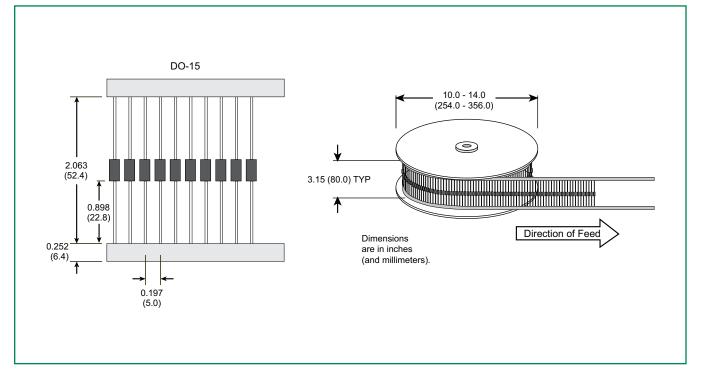
Note: y = package

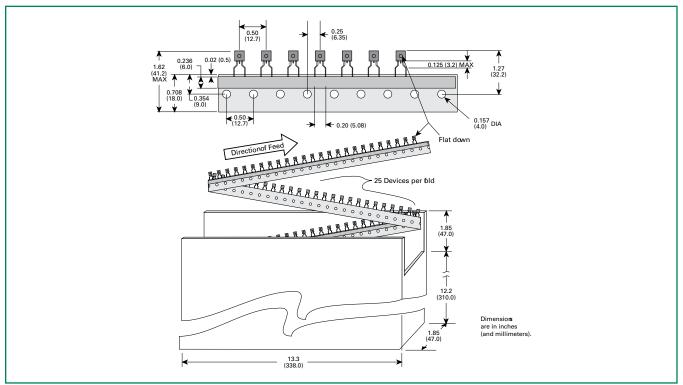

Packing Options

Part Number	Marking	Weight	Packaging Mode	Base Quantity
Kxxx0GH	Kxxx0GH	0.38g	Bulk	1000
Kxxx0GHRP	Kxxx0GH	0.38g	Reel Pack	5000
Kxxx0SHRP	KxxSH	0.1g	Reel Pack	2500
Kxxx0EH70	Kxxx0EH	0.17g	Bulk	2000
Kxxx0EH70AP	Kxxx0EH	0.17g	Ammo Pack	2000
Kxxx0EH70RP2	Kxxx0EH	0.17g	Reel Pack	2000
Kxxx0EH70RP3	Kxxx0EH	0.17g	Reel Pack	2000

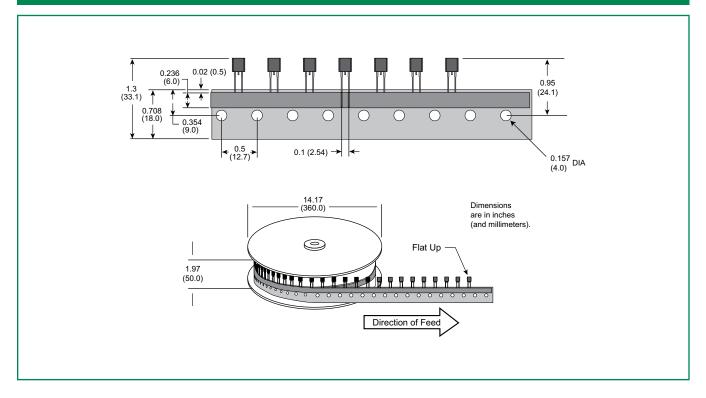
Note: xxx or xx = voltage

DO-214 Embossed Carrier Reel Pack (RP) Specifications

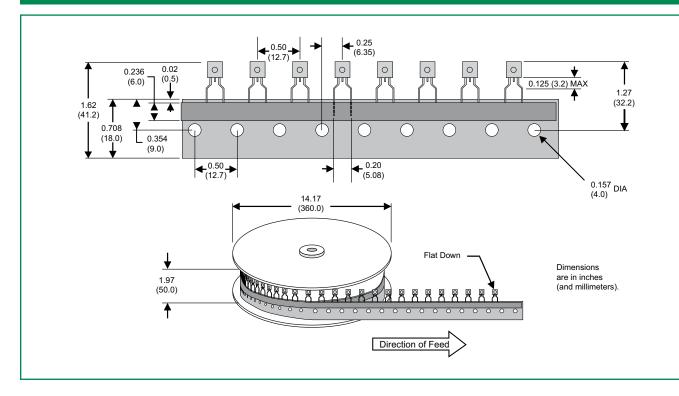

Meets all EIA-481-1 Standards

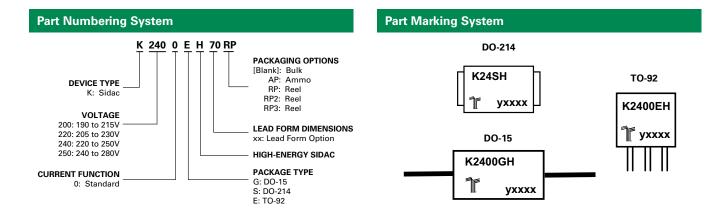

DO-15 Reel Pack (RP) Specifications

Meets all EIA RS-296 Standards


TO-92 Type 70 Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards




TO-92 Type 70 Reel Pack (RP3) Optional Specifications

TO-92 Type 70 Reel Pack (RP2) Standard Specifications

