

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

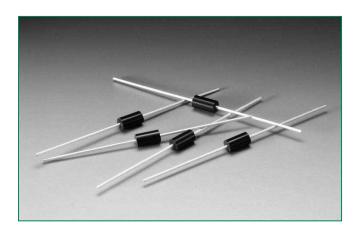
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Kxxx1G Series RoHS

Schematic Symbol

Applications

Typical application circuit presented in Figure 10 of this data sheet (Typical Metal Halide Ignitor Circuit).

Description

The Multipulse™ SIDAC is a voltage switch used in Metal-Halide lamp ignition circuits as well as High Pressure Sodium lamp ignition circuits for outdoor street and area lighting. This robust solid state switch is designed to handle lamp igniter applications requiring operation at ambient temperatures up to 90°C where igniter circuit components can raise SIDAC junction temperature up to 125°C, especially when the lamp element is removed or ruptured. Its excellent commutation time (t_{COMM}) makes this robust product best suited for producing multiple pulses in each half cycle of 50/60 Hz line voltage. The Multipulse™ SIDAC is offered in DO-15 axial leaded package.

Kxxx1G SIDAC has a repetitive off-state blocking voltage (V_{DBM}) of 180V to 270V minimum depending actual device type. Blocking capability is ensured by glass passivated junctions for best reliability. Package is epoxy encapsulation with tin-plated copper alloy leads.

Features

- AC circuit oriented
- RoHS Compliant
- Triggering Voltage of 200 to 380V

Electrical Specifications

Symbol	Parameters	Test Conditions	Min	Max	Unit
V _{BO}	Breakover/Trigger Voltage	K2201G K2401G	200 220	230 250	V
	Breakovely mager voltage	K2501G K3601G	240 340	280 380	v
V_{DRM}	Repetitive Peak Off-State Voltage	K2201G K2401G K2501G K3601G	180 190 200 270		V
I _{T(RMS)}	On-State RMS Current, T _J < 125°C	50/60Hz Sine Wave		1	А
I _H	Dynamic Holding Current, R=100 Ω	50/60Hz Sine Wave		160 TYP	mA
R_s	Switching Resistance, $R_S = \frac{(V_{BO} - V_S)}{(I_S - I_{BO})}$	50/60Hz Sine Wave		100	Ω
t _{comm}	Commutation Time T _J < 125°C	See test circuit and waveform in Figure 9		100	µsec
I _{BO}	Breakover Current	50/60Hz Sine Wave		10	uA
I _{TSM}	Non-repetitive 1 cycle On-State peak value	60Hz 50Hz		20.0 16.7	А
di/dt	Critical Rate of Rise of On-State Current			150	A/µsec
dv/dt	Critical Rate of Rise of Off-State Voltage			1500	V/µsec
T _s	Storage Temperature Range		-40	+125	°C
T _J	Max Operating Junction Temperature		-40	+125	°C
$R_{\theta JL}$	Thermal Resistance	Junction to lead		18	°C/W

Figure 1: Characteristics

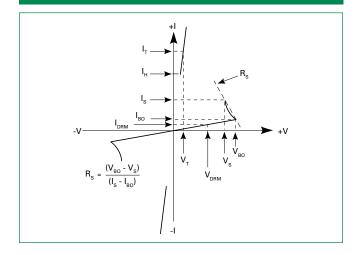


Figure 2: Maximum Allowable Lead/Tab Temperature vs. On-State Current

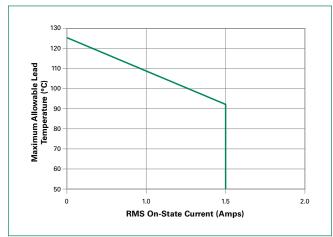


Figure 3: Power Dissipation (Typical) vs. On-State Current

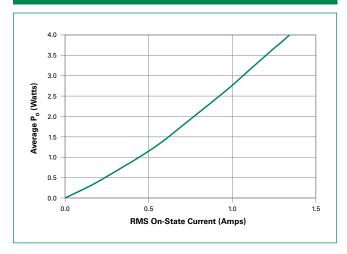


Figure 4: V_{BO} Change vs. Junction Temperature

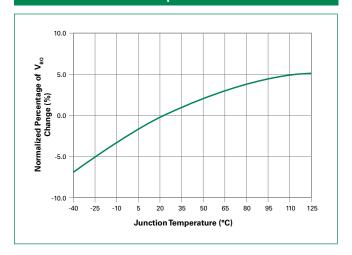


Figure 5: Pulse On-State Current Rating

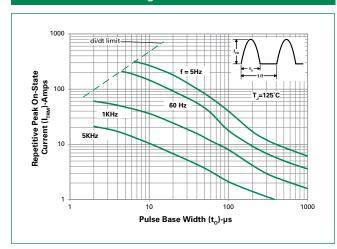
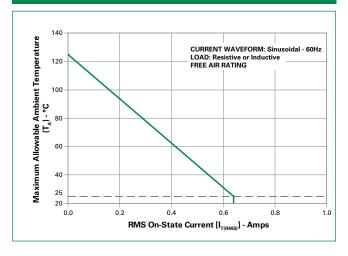



Figure 6: Maximum Allowable Ambient Temperature vs. On-State Current

Figure 7: Peak Surge Current vs Surge Current Duration

SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive RMS On-State Current: I_{τ} Maximum Rated Value at

RMS On-State Current: I_T Maximum Rated Value at Specified Junction Temperature

Notes:

- Blocking capability may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

Figure 8: Typical On-State Voltage vs On-State Current

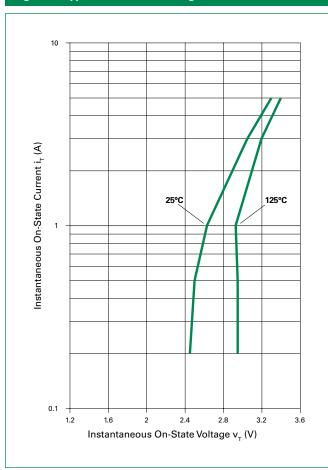
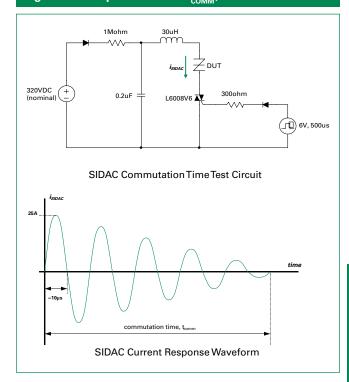
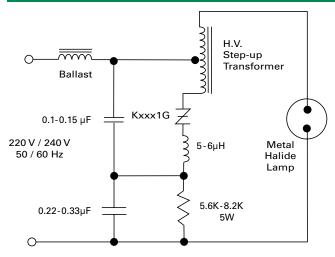
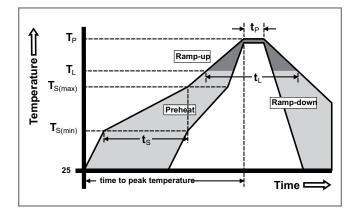




Figure 9: $Multipulse^{T}$ SIDAC t_{COMM} , Commutation Time


Figure 10: Typical Metal Halide Ignitor Circuit

Note: With proper component selection, this circuit will produce three pulses for ignition of metal halide lamp that requires a minimum of three pulses at 4kV magnitude and >1uSec duration each at a minimum repetition rate of 3.3kHz.

Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T _L) to peak		5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
- C	-Temperature (T _L) (Liquidus)	217°C	
Reflow	-Temperature (t _L)	60 – 150 seconds	
Peak Temperature (T _P)		260+0/-5 °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _p)		8 minutes Max.	
Do not exc	ceed	280°C	

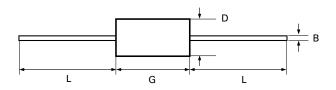
Revised: August 29, 2008

Teccor® brand Thyristors Multipulse™ SIDACs

Physical Specifications

Terminal Finish	100% Matte Tin Plated	
Body Material	UL recognized epoxy meeting flammability classification 94V-0	
Lead Material	Copper Alloy	

Package	Weight / unit (mg)		
DO-15	385		


Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Overheating and surge currents are the main killers of SIDACs. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Reliability/Environmental Tests

Test	Specifications and Conditions	
High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A Rated V _{DRM} (VAC-peak), 125°C, 1008 hours	
Temperature Cycling	MIL-STD-750: Method 1051, 100 cycles; -40°C to 150°C, 15-minute dwell time	
Temperature / Humidity	EIA/JEDEC: JESD22-A101 1008 hours; 160V - DC: 85°C; 85% relative humidity	
High Temp Storage	MIL-STD-750: Method 1031 150°C, 1008 hours	
Low-Temp Storage	-40°C, 1008 hours	
Thermal Shock	MIL-STD-750: Method 1056 10 cycles; 0°C to 100°C; 5-minute dwell- time at each temperature; 10-sec (max) transfer time between temperature	
Autoclave	EIA/JEDEC: JESD22-A102 168 hours (121°C at 2 ATMs) and 100% RH	
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds	
Solderability	ANSI/J-STD-002: Category 3, Test A	
Repetitive Surge Life Testing	Multi firings per half cycle at 60Hz in application circuit for 168 hours minimum	

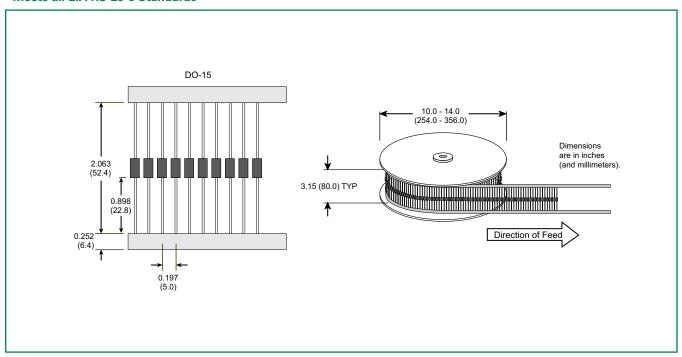
Dimensions — DO-15 (G Package)

Dimension	Inches		Millimeters	
Difficusion	Max	Max	Min	Max
В	0.028	0.034	0.711	0.864
D	0.120	0.140	3.048	3.556
G	0.235	0.270	5.969	6.858
L	1.000		25.400	

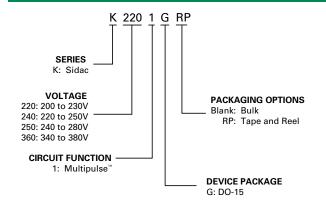
Product Selector

Part Number	Switching Voltage Range		Blocking Voltage	Poekogoo	
Part Number	V _{BO} Minimum	V _{BO} Maximum	V_{DRM}	Packages	
K2201G	200V	230V	180V	DO-15	
K2401G	220V	250V	190V	DO-15	
K2501G	240V	280V	200V	DO-15	
K3601G	340V	380V	270V	DO-15	

Teccor® brand ThyristorsMultipulse™ SIDACs


Packing Options

Part Number	Package	Packing Mode	Base Quantity
Kxxx1G	DO-15	Bulk	1000
Kxxx1GRP	DO-15	Tape & Reel	5000


Note: xxx = voltage

DO-15 Embossed Carrier RP Specifications

Meets all EIA RS-29-6 Standards

Part Numbering System

Part Marking System

