

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

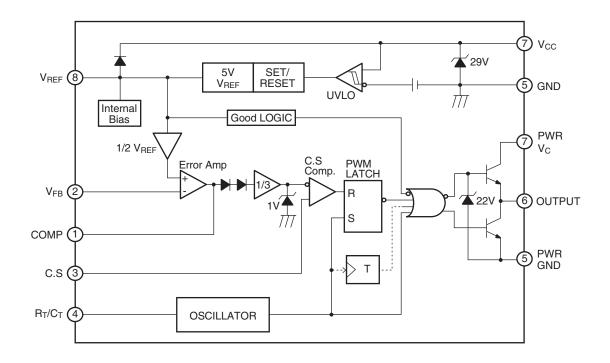
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

KA3842AC/KA3842AE SMPS Controller

Features

- Low start current 0.2mA (Typ.)
- Operating range up to 500kHz
- Cycle by cycle current limiting
- Under Voltage Lock Out (UVLO) with hysteresis
- Short shutdown delay time: Typ.100ns
- High current totem-pole output
- Output swing limiting: 22V

Description


The KA3842AC/KA3842AE are fixed PWM controllers for Off Line and DC to DC converter applications. The internal circuits include UVLO, low start up current, temperature compensated reference, high gain error amplifier, current sensing comparator, and high current totem pole output for driving a POWER MOSFET. Also KA3842AC/KA3842AE provides low start up current below 0.3mA and short shutdown delay time, typically 100ns. The KA3842AC/KA3842AE has a UVLO threshold of 16V(on) and 10V(off). The KA3842AC/KA3842AE can operate within a 100% duty cycle.

Ordering Information

	Part Number	Operating Temp. Range	Pb-Free	Package	Packing Method
Ī	KA3842AC	-0 to +70°C	Yes	8-DIP	Tube
	KA3842AE				

Internal Block Diagram

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Symbol	Parameter	Value	Unit
v _{cc}	Supply Voltage	30	V
I _O	Output Current	±1	Α
V _{I(ANA)}	Analog Inputs (Pins 2, 3)	-0.3 to 6.3	V
I _{SINK(EA)}	Error Amp. Output Sink Current	10	mA
P_{D}	Power Dissipation	1	W
Rθja	Thermal Resistance, Junction-to-Air ⁽⁴⁾	95	°C/W

Electrical Characteristics

(V_{CC} = 15V, R_T = 10k¾, C_T = 3.3nF, T_A = 0°C to +70°C, unless otherwise specified)

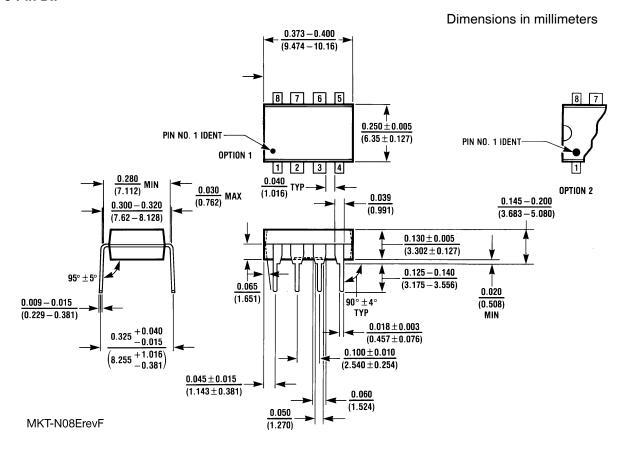
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
REFERENCE SECTION						
V_{REF}	Output Voltage	$T_{J} = 25^{\circ}C, I_{O} = 1mA$	4.9	5.0	5.1	V
ΔV_{REF}	Line Regulation	V _{CC} = 12V to 25V	_	6	20	mV
	Load Regulation	I _O = 1mA to 20mA	_	6	25	mV
I _{SC}	Output Short Circuit	T _A = 25°C	_	-100	-180	mA
OSILLATO	R SECTION					
Fosc	Initial Accuracy	T _J = 25°C	47	52	57	kHz
ST _V	Voltage Stability	V _{CC} = 12V to 25V	_	0.2	1	%
V _{OSC}	Amplitude	V _{PIN4} , Peak to Peak	_	1.7	-	V
I _{DISCHG}	Discharge Current	T _J = 25°C, Pin 4 = 2V	7.8	8.3	8.8	mA
CURRENT	SENSE SECTION					
G _V	Gain ⁽²⁾⁽³⁾		2.85	3	3.15	V/V
V _{I(MAX)}	Maximum Input Signal ⁽²⁾	V _{PIN1} = 5V	0.9	1.0	1.1	V
PSRR	PSRR ⁽¹⁾⁽²⁾	V _{CC} = 12V to 25V	_	70	_	dB
I _{BIAS}	Input Bias Current		_	-2	-10	μA
T _D	Delay to Output ⁽¹⁾	V _{PIN3} = 0 V to 2V	-	100	200	ns
ERROR A	MPLIFIER SECTION					
V _I	Input Voltage	T _{PIN1} = 2.5V	2.42	2.50	2.58	V
I _{BIAS}	Input Bias Current		_	-0.3	-2	μA
G _{VO}	Open Loop Gain ⁽¹⁾	V _O = 2V to 4V	65	90	_	dB
GBW	Unity Gain Bandwidth ⁽¹⁾	T _J = 25°C	0.7	1	_	MHz
PSRR	PSRR ⁽¹⁾	V _{CC} = 12V to 25V	60	70	_	dB
I _{SINK}	Output Sink Current	V _{PIN2} = 2.7V V _{PIN1} = 1.1V	2	6	-	mA
I _{SOURCE}	Output Source Current	$V_{PIN2} = 2.3V$ -0.5 -0 $V_{PIN1} = 5.0V$		-0.8	-	mA
V _{OH}	Output High Voltage	$V_{PIN2} = 2.3V$, R1 = 15k¾ to GND	V _{PIN2} = 2.3V, R1 = 15k¾ to GND 5		_	V
V _{OL}	Output Low Voltage	V _{PIN2} = 2.7V R1 = 15k¾ to Pin 8	_	0.8	1.1	٧

Electrical Characteristics (Continued)

(V_{CC} = 15V, R_T = 10k¾, C_T = 3.3nF, T_A = 0°C to +70°C, unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
OUTPUT SECTION							
V _{OL}	Output Low Level	I _{SINK} = 20mA	_	0.1	0.4	V	
		I _{SINK} = 200mA	_	1.5	2.2	V	
V _{OH}	Output High Level	I _{SOURCE} = 20mA	13	13.5	_	V	
		I _{SOURCE} = 200mA	12	13.5	_	V	
t _R	Rise Time ⁽¹⁾	T _J = 25°C, C1 = 1nF	_	40	100	ns	
t _F	Fall Time ⁽¹⁾	T _J = 25°C, C1 = 1nF	_	40	100	ns	
V _{OLIM}	Output Voltage Swing Limit	V _{CC} = 27V, C1 = 1nF	_	22	_	٧	
UNDER VO	OLTAGE LOCKOUT SECTION	•	•	•			
V _{TH}	Start Threshold		15	16	17	V	
V_{TL}	Min. Operating Voltage (After turn on)		9	10	11	V	
PWM SEC	PWM SECTION						
D _{MAX}	Maximum Duty Cycle		94	96	100	%	
D _{MIN}	Minimum Duty Cycle		_	_	0	%	
TOTAL STANDBY CURRENT							
I _{ST}	Start-Up Current		_	0.2	0.4	mA	
I _{CC}	Operating Supply Current	$V_{PIN2} = V_{PIN3} = 0V$	_	11	17	mA	
V _Z	V _{CC} Zener Voltage	I _{CC} = 25mA	_	29	_	V	

 $^{^{\}ast}$ Adjust V_{CC} above the start threshold before setting at 15V


Notes:

- 1. These parameters, although guaranteed, are not 100% tested in production.
- 2. Parameter measured at trip point of latch with V2 = 0V.
- 3. Gain defined as: $G_V = \Delta V_{PIN1} \Delta V_{PIN3} (V_{PIN3} = 0 \text{ to } 0.8V)$
- 4. Junction-to-air thermal resistance test environments PCB information:

Board thickness; 1.6mm, Board dimension: 76.2 X 114.3mm², Ref.: EIA/JSED51-3 and EIA/JSED51-7 Board structure; Using the single layer PCB.

Package Dimensions

8-Pin DIP

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TinyLogic [®]
CROSSVOLT™	GTO™ .	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I ² C TM	MSXPro™	RapidConnect™	UHC™
E ² CMOS TM	i-Lo TM	OCX^{TM}	SerDes™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC®	SILENT SWITCHER®	VCX TM
FACT Quiet Serie		OPTOPLANAR™	SMART START™	Wire™
Across the board. Around the world.™ The Power Franchise®		PACMAN™	SPM™	
		POP™	Stealth™	
		Power247™	SuperFET™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

PowerEdge™

LIFE SUPPORT POLICY

Programmable Active Droop™

FAIRCHILDÍS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

SuperSOT™-3

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I18

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessure any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative